1-3 of 3 Results  for:

  • Keywords: neuroanatomy x
  • Invertebrate Neuroscience x
Clear all


Cephalochordate Nervous System  

Simona Candiani and Mario Pestarino

The central and peripheral nervous systems of amphioxus adults and larvae are characterized by morphofunctional features relevant to understanding the origins and evolutionary history of the vertebrate CNS. Classical neuroanatomical studies are mainly on adult amphioxus, but there has been a recent focus, both by TEM and molecular methods, on the larval CNS. The latter is small and remarkably simple, and new data on the localization of glutamatergic, GABAergic/glycinergic, cholinergic, dopaminergic, and serotonergic neurons within the larval CNS are now available. In consequence, it has been possible begin the process of identifying specific neuronal circuits, including those involved in controlling larval locomotion. This is especially useful for the insights it provides into the organization of comparable circuits in the midbrain and hindbrain of vertebrates. A much better understanding of basic chordate CNS organization will eventually be possible when further experimental data will emerge.


Crustacean Visual Circuits Underlying Behavior  

Daniel Tomsic and Julieta Sztarker

Decapod crustaceans, in particular semiterrestrial crabs, are highly visual animals that greatly rely on visual information. Their responsiveness to visual moving stimuli, with behavioral displays that can be easily and reliably elicited in the laboratory, together with their sturdiness for experimental manipulation and the accessibility of their nervous system for intracellular electrophysiological recordings in the intact animal, make decapod crustaceans excellent experimental subjects for investigating the neurobiology of visually guided behaviors. Investigations of crustaceans have elucidated the general structure of their eyes and some of their specializations, the anatomical organization of the main brain areas involved in visual processing and their retinotopic mapping of visual space, and the morphology, physiology, and stimulus feature preferences of a number of well-identified classes of neurons, with emphasis on motion-sensitive elements. This anatomical and physiological knowledge, in connection with results of behavioral experiments in the laboratory and the field, are revealing the neural circuits and computations involved in important visual behaviors, as well as the substrate and mechanisms underlying visual memories in decapod crustaceans.


Sensing Polarized Light in Insects  

Thomas F. Mathejczyk and Mathias F. Wernet

Evolution has produced vast morphological and behavioral diversity amongst insects, including very successful adaptations to a diverse range of ecological niches spanning the invasion of the sky by flying insects, the crawling lifestyle on (or below) the earth, and the (semi-)aquatic life on (or below) the water surface. Developing the ability to extract a maximal amount of useful information from their environment was crucial for ensuring the survival of many insect species. Navigating insects rely heavily on a combination of different visual and non-visual cues to reliably orient under a wide spectrum of environmental conditions while avoiding predators. The pattern of linearly polarized skylight that results from scattering of sunlight in the atmosphere is one important navigational cue that many insects can detect. Here we summarize progress made toward understanding how different insect species sense polarized light. First, we present behavioral studies with “true” insect navigators (central-place foragers, like honeybees or desert ants), as well as insects that rely on polarized light to improve more “basic” orientation skills (like dung beetles). Second, we provide an overview over the anatomical basis of the polarized light detection system that these insects use, as well as the underlying neural circuitry. Third, we emphasize the importance of physiological studies (electrophysiology, as well as genetically encoded activity indicators, in Drosophila) for understanding both the structure and function of polarized light circuitry in the insect brain. We also discuss the importance of an alternative source of polarized light that can be detected by many insects: linearly polarized light reflected off shiny surfaces like water represents an important environmental factor, yet the anatomy and physiology of underlying circuits remain incompletely understood.