1-4 of 4 Results

  • Keywords: electrophysiology x
Clear all

Article

Sabine Kastner and Timothy J. Buschman

Natural scenes are cluttered and contain many objects that cannot all be processed simultaneously. Due to this limited processing capacity, neural mechanisms are needed to selectively enhance the information that is most relevant to one’s current behavior and to filter unwanted information. We refer to these mechanisms as “selective attention.” Attention has been studied extensively at the behavioral level in a variety of paradigms, most notably, Treisman’s visual search and Posner’s paradigm. These paradigms have also provided the basis for studies directed at understanding the neural mechanisms underlying attentional selection, both in the form of neuroimaging studies in humans and intracranial electrophysiology in non-human primates. The selection of behaviorally relevant information is mediated by a large-scale network that includes regions in all major lobes as well as subcortical structures. Attending to a visual stimulus modulates processing across the visual processing hierarchy with stronger effects in higher-order areas. Current research is aimed at characterizing the functions of the different network nodes as well as the dynamics of their functional connectivity.

Article

Understanding the principles by which sensory systems represent natural stimuli is one of the holy grails of neuroscience. In the auditory system, the study of the coding of natural sounds has a particular prominence. Indeed, the relationships between neural responses to simple stimuli (usually pure tone bursts)—often used to characterize auditory neurons—and complex sounds (in particular natural sounds) may be complex. Many different classes of natural sounds have been used to study the auditory system. Sound families that researchers have used to good effect in this endeavor include human speech, species-specific vocalizations, an “acoustic biotope” selected in one way or another, and sets of artificial sounds that mimic important features of natural sounds. Peripheral and brainstem representations of natural sounds are relatively well understood. The properties of the peripheral auditory system play a dominant role, and further processing occurs mostly within the frequency channels determined by these properties. At the level of the inferior colliculus, the highest brainstem station, representational complexity increases substantially due to the convergence of multiple processing streams. Undoubtedly, the most explored part of the auditory system, in term of responses to natural sounds, is the primary auditory cortex. In spite of over 50 years of research, there is still no commonly accepted view of the nature of the population code for natural sounds in the auditory cortex. Neurons in the auditory cortex are believed by some to be primarily linear spectro-temporal filters, by others to respond to conjunctions of important sound features, or even to encode perceptual concepts such as “auditory objects.” Whatever the exact mechanism is, many studies consistently report a substantial increase in the variability of the response patterns of cortical neurons to natural sounds. The generation of such variation may be the main contribution of auditory cortex to the coding of natural sounds.

Article

Daniel Tomsic and Julieta Sztarker

Decapod crustaceans, in particular semiterrestrial crabs, are highly visual animals that greatly rely on visual information. Their responsiveness to visual moving stimuli, with behavioral displays that can be easily and reliably elicited in the laboratory, together with their sturdiness for experimental manipulation and the accessibility of their nervous system for intracellular electrophysiological recordings in the intact animal, make decapod crustaceans excellent experimental subjects for investigating the neurobiology of visually guided behaviors. Investigations of crustaceans have elucidated the general structure of their eyes and some of their specializations, the anatomical organization of the main brain areas involved in visual processing and their retinotopic mapping of visual space, and the morphology, physiology, and stimulus feature preferences of a number of well-identified classes of neurons, with emphasis on motion-sensitive elements. This anatomical and physiological knowledge, in connection with results of behavioral experiments in the laboratory and the field, are revealing the neural circuits and computations involved in important visual behaviors, as well as the substrate and mechanisms underlying visual memories in decapod crustaceans.

Article

Sequences permeate daily life. They can be defined as a discrete series of items or states that occur in a specific order with a beginning and end. The brain supports the perception and execution of sequences. Perceptual sequences involve tracking regularities in incoming stimuli, such as the series of sounds that make up a word in language. Executed sequences range from the series of muscle activations used by a frog to catch a fly to a chess master mapping her next moves. How the brain controls sequences must therefore scale to multiple levels of control. Investigating how the brain functions to accomplish this task spans from the study of individual cells in the brain to human cognition. Understanding the neural systems that underlie sequential control is necessary to approach the mechanistic underpinnings of complex conditions such as addiction, which may be rooted in difficult-to-extinguish sequential behaviors. Current research focuses on studies in both animal and human models and spans the levels of complexity of sequential control and the brain systems that support it.