1-3 of 3 Results

  • Keywords: kisspeptin x
Clear all

Article

Paul E. Micevych and Melinda A. Mittelman-Smith

In the last two decades of the 20th century, key findings in the field of estrogen signaling completely changed our understanding of hormones: first, steroidogenesis was demonstrated in the CNS; second, a vast majority of cells in the nervous system were shown to have estrogen receptors; third, a second nuclear estrogen receptor (ERß) was cloned; and finally, “nuclear” receptors were shown to be present and functional in the cell membrane. Shortly thereafter, even more membrane estrogen receptors were discovered. Steroids (estrogens, in particular) began to be considered as neurotransmitters and their receptors were tethered to G protein-coupled receptor signaling cascades. In some parts of the brain, levels of steroids appeared to be independent of those found in the circulation and yet, circulating steroids had profound actions on the brain physiology. In this review, we discuss the interaction of peripheral and central estrogen action in the context of female reproduction—one of the best-studied aspects of steroid action. In addition to reviewing the evidence for steroidogenesis in the hypothalamus, we review membrane-localized nuclear receptors coupling to G protein-signaling cascades and the downstream physiological consequences for reproduction. We will also introduce newer work that demonstrates cell signaling for a common splice variant of estrogen receptor-α (ERα), and membrane action of neuroprogesterone in regulating estrogen positive feedback.

Article

Brian P. Kenealy and Ei Terasawa

Female reproduction is an interplay between the hypothalamus, pituitary, and ovaries. While the gonadotropin releasing hormone (GnRH) neuron in the hypothalamus regulates gonadal function through the pituitary, GnRH neuronal activity is also profoundly influenced by ovarian steroid hormones. GnRH is released from GnRH neurons in a pulsatile manner after integration of a diverse array of internal and external milieus. Since the discovery of the mammalian GnRH molecule, over a dozen GnRH forms have been identified in the animal kingdom, and large numbers of publications in various lab animal and human studies suggest that GnRH neurons are regulated by multiple neuromodulators in the brain, such as kisspeptin, neurokinin B, β-dynorphin, neuropeptide Y, GnIH, GABA, glutamate, and glial factors. A recent emerging concept is that steroids synthesized locally in the hypothalamus, namely, neuroestradiol and neuroprogesterone, also contribute to the regulation of GnRH neuronal activity, and hence female reproduction. Together with modulation by various inputs and ovarian steroid feedback, GnRH neurons are responsible for puberty, cyclic ovulation, and menopause.

Article

During the evolution of animals, survival and reproduction depended upon mechanisms that maintained internal homeostasis in the face of environmental change. These environmental changes included fluctuations in ambient temperature, food availability, humidity, day length, and population density. Most, if not all, of these variables have effects on the availability of energy, and most vertebrate species have mechanisms that sense energy availability and adjust behavioral priorities accordingly. For example, when the availability of food and potential mating partners is stable and abundant, brain mechanisms often inhibit ingestive behavior, increase energy expenditure, and give priority to courtship and mating. In response to severe energy shortages, brain mechanisms are likely to stimulate foraging, food hoarding, and overeating. These same deficits often delay reproductive development or inhibit adult reproductive behavior. Such adaptations involve the integration of sensory signals with peripheral hormone signals and central effectors, and they are key to understanding health and disease, particularly obesity, eating disorders, and diabetes. The link between energy balance and reproduction recurs repeatedly, whether in the context of the sensory-somatic system, the autonomic nervous system, or the neuroendocrine cascades. Peripheral signals that are detected by receptors on vagal and splanchnic nerves are relayed to the caudal hindbrain. This brain area contains the effectors for peripheral hormone secretion and for chewing and swallowing, and this same brain area contains receptors for humoral and metabolic signals from peripheral circulation. The caudal hindbrain is therefore a strong candidate for integration of multiple signals that control the initiation of meals, meal size, energy storage, and energy expenditure, including the energy expended on reproduction. There are some differences between the reproductive and ingestive mechanisms, but there are also many striking similarities. There are still gaps in our knowledge about the nature and location of metabolic receptors and the pathways to their effectors. Some of the most promising research is designed to shed light on how hormonal signals might be enhanced or modulated by the peripheral energetic condition (e.g., the level of oxidizable metabolic fuels).