1-7 of 7 Results

  • Keywords: synapse x
Clear all

Article

Synaptic connections in the brain can change their strength in response to patterned activity. This ability of synapses is defined as synaptic plasticity. Long lasting forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD), are thought to mediate the storage of information about stimuli or features of stimuli in a neural circuit. Since its discovery in the early 1970s, synaptic plasticity became a central subject of neuroscience, and many studies centered on understanding its mechanisms, as well as its functional implications.

Article

Brian D. Burrell

The medicinal leech (Hirudo verbana) is an annelid (segmented worm) and one of the classic model systems in neuroscience. It has been used in research for over 50 years and was one of the first animals in which intracellular recordings of mechanosensory neurons were carried out. Remarkably, the leech has three main classes of mechanosensory neurons that exhibit many of the same properties found in vertebrates. The most sensitive of these neurons are the touch cells, which are rapidly adapting neurons that detect low-intensity mechanical stimuli. Next are the pressure cells, which are slow-adapting sensory neurons that respond to higher intensity, sustained mechanostimulation. Finally, there are nociceptive neurons, which have the highest threshold and respond to potentially damaging mechanostimuli, such as a pinch. As observed in mammals, the leech has separate mechanosensitive and polymodal nociceptors, the latter responding to mechanical, thermal, and chemical stimuli. The cell bodies for all three types of mechanosensitive neurons are found in the central nervous system where they are arranged as bilateral pairs. Each neuron extends processes to the skin where they form discrete receptive fields. In the touch and pressure cells, these receptive fields are arranged along the dorsal-ventral axis. For the mechano-only and polymodal nociceptive neurons, the peripheral receptive fields overlap with the mechano-only nociceptor, which also innervates the gut. The leech also has a type of mechanosensitive cell located in the periphery that responds to vibrations in the water and is used, in part, to detect potential prey nearby. In the central nervous system, the touch, pressure, and nociceptive cells all form synaptic connections with a variety of motor neurons, interneurons, and even each other, using glutamate as the neurotransmitter. Synaptic transmission by these cells can be modulated by a variety of activity-dependent processes as well as the influence of neuromodulatory transmitters, such as serotonin. The output of these sensory neurons can also be modulated by conduction block, a process in which action potentials fail to propagate to all the synaptic release sites, decreasing synaptic output. Activity in these sensory neurons leads to the initiation of a number of different motor behaviors involved in locomotion, such as swimming and crawling, as well as behaviors designed to recoil from aversive/noxious stimuli, such as local bending and shortening. In the case of local bending, the leech is able to bend in the appropriate direction away from the offending stimuli. It does so through a combination of which mechanosensory cell receptive fields have been activated and the relative activation of multiple sensory cells decoded by a layer of downstream interneurons.

Article

Alyssa L. Pedersen and Colin J. Saldanha

Given the profound influence of steroids on the organization and activation of the vertebrate central nervous system (CNS), it is perhaps not surprising that these molecules are involved in processes that restructure the cytoarchitecture of the brain. This includes processes such as neurogenesis and the connectivity of neural circuits. In the last 30 years or so, we have learned that the adult vertebrate brain is far from static; it responds to changes in androgens and estrogens, with dramatic alterations in structure and function. Some of these changes have been directly linked to behavior, including sex, social dominance, communication, and memory. Perhaps the most dramatic levels of neuroplasticity are observed in teleosts, where circulating and centrally derived steroids can affect several end points, including cell proliferation, migration, and behavior. Similarly, in passerine songbirds and mammals, testosterone and estradiol are important modulators of adult neuroplasticity, with documented effects on areas of the brain necessary for complex behaviors, including social communication, reproduction, and learning. Given that many of the cellular processes that underlie neuroplasticity are often energetically demanding and temporally protracted, it is somewhat surprising that steroids can affect physiological and behavioral end points quite rapidly. This includes recent demonstrations of extremely rapid effects of estradiol on synaptic neurotransmission and behavior in songbirds and mammals. Indeed, we are only beginning to appreciate the role of temporally and spatially constrained neurosteroidogenesis, like estradiol and testosterone being made in the brain, on the rapid regulation of complex behaviors.

Article

Kerrianne Ryan and Ian A. Meinertzhagen

Urochordates are chordate siblings that comprise the following marine invertebrates: the sessile Ascidiaceae, or sea squirts; planktonic Larvacea; and the pelagic salps, doliolids, and pyrosomes (collectively the Thaliacea), each more beautiful than the next. Tadpole larvae of ascidians and adult larvaceans both have a body plan that is chordate, with a notochord and dorsal, tubular nervous system that forms from a neural plate. Thalaciacea have a ganglion developed from a tubular structure, which has been compared to the vertebrate mes-metencephalic region, and while salps have well developed eyes, other anterior brain components are absent, and the connections within their central nervous system, as well as the neurobiology of other Thaliacea are all little reported. The ascidian tadpole larva is extensively reported, especially in the model species Ciona intestinalis, as is the caudal nerve cord in the larvacean Oikopleura dioica. Chordate features that share proposed homology with vertebrate features include ciliary photoreceptors that hyperpolarize to light, descending decussating motor pathways that resemble Mauthner cell pathways, coronet cells in the ascidian larva and saccus vasculosus of fishes, the neural canal’s Reissner’s fiber; secondary mechanoreceptors that resemble hair cells; and ascidian bipolar cells that are like dorsal root ganglion cells.

Article

Tom Baden, Timm Schubert, Philipp Berens, and Thomas Euler

Visual processing begins in the retina—a thin, multilayered neuronal tissue lining the back of the vertebrate eye. The retina does not merely read out the constant stream of photons impinging on its dense array of photoreceptor cells. Instead it performs a first, extensive analysis of the visual scene, while constantly adapting its sensitivity range to the input statistics, such as the brightness or contrast distribution. The functional organization of the retina abides to several key organizational principles. These include overlapping and repeating instances of both divergence and convergence, constant and dynamic range-adjustments, and (perhaps most importantly) decomposition of image information into parallel channels. This is often referred to as “parallel processing.” To support this, the retina features a large diversity of neurons organized in functionally overlapping microcircuits that typically uniformly sample the retinal surface in a regular mosaic. Ultimately, each circuit drives spike trains in the retina’s output neurons, the retinal ganglion cells. Their axons form the optic nerve to convey multiple, distinctive, and often already heavily processed views of the world to higher visual centers in the brain. From an experimental point of view, the retina is a neuroscientist’s dream. While part of the central nervous system, the retina is largely self-contained, and depending on the species, it receives little feedback from downstream stages. This means that the tissue can be disconnected from the rest of the brain and studied in a dish for many hours without losing its functional integrity, all while retaining excellent experimental control over the exclusive natural network input: the visual stimulus. Once removed from the eyecup, the retina can be flattened, thus its neurons are easily accessed optically or using visually guided electrodes. Retinal tiling means that function studied at any one place can usually be considered representative for the entire tissue. At the same time, species-dependent specializations offer the opportunity to study circuits adapted to different visual tasks: for example, in case of our fovea, high-acuity vision. Taken together, today the retina is amongst the best understood complex neuronal tissues of the vertebrate brain.

Article

Donald Edwards

Crayfish are decapod crustaceans that use different forms of escape to flee from different types of predatory attacks. Lateral and Medial Giant escapes are released by giant interneurons of the same name in response to sudden, sharp attacks from the rear and front of the animal, respectively. A Lateral Giant (LG) escape uses a fast rostral abdominal flexion to pitch the animal up and forward at very short latency. It is succeeded by guided swimming movements powered by a series of rapid abdominal flexions and extensions. A Medial Giant (MG) escape uses a fast, full abdominal flexion to thrust the animal directly backward, and is also followed by swimming that moves the animal rapidly away from the attacker. More slowly developing attacks evoke Non-Giant (NG) escapes, which have a longer latency, are varied in the form of abdominal flexion, and are directed initially away from the attacker. They, too, are followed by swimming away from the attacker. The neural circuitry for LG escape has been extensively studied and has provided insights into the neural control of behavior, synaptic integration, coincidence detection, electrical synapses, behavioral and synaptic plasticity, neuroeconomical decision-making, and the modulatory effects of monoamines and of changes in the animal’s social status.

Article

Although the Cnidaria have evolved a wide range of body forms matched with an equally varied neural anatomy, individual species exhibit common patterns of behavior. For example, in all species a key challenge for the nervous system is to transfer food from the peripherally mounted tentacles to the centrally located stomach. Foraging movements, necessary to maintain the food supply, must be accomplished in such a way as to avoid interference with the primary objective of getting prey into the mouth. Furthermore, the hunt for prey must be balanced by a measured response to “threat.” Different species respond to threat in markedly different ways, but in each case foraging is inhibited, just as it is during transmission of food. One hundred years ago, G. H. Parker questioned whether a centralized or a locally organized nervous system could best account for sea anemone behavior. Anatomical and electrophysiological studies now suggest that in most Cnidaria there is a degree of hierarchical control, with local reflexes coordinated by more condensed systems of neurons. This organization is highly developed in the nerve rings of hydrozoan medusae and takes the form of ganglion-like rhopalia in the Cubozoa. Even in hydrozoan polyps such as Hydra there are at least four separate neuronal systems. It is likely that the underlying mechanisms (containing both homologous and analogous elements) will be best revealed by a comparative approach that directly relates behavior with its molecular basis. Useful examples include comparisons between sea anemones with and without through-conducting systems; between hydra with and without oral rings; between medusae with and without coordinated escape swimming. Recent advances in transgenomic labeling have shown the way forward.