Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 31 October 2020

Crustacean Visual Circuits Underlying Behaviorlocked

  • Daniel TomsicDaniel TomsicInstitute of Physiology, Molecular Biology, and Neuroscience Universidad de Buenos Aires
  •  and Julieta SztarkerJulieta SztarkerInstitute of Physiology, Molecular Biology, and Neuroscience Universidad de Buenos Aires

Summary

Decapod crustaceans, in particular semiterrestrial crabs, are highly visual animals that greatly rely on visual information. Their responsiveness to visual moving stimuli, with behavioral displays that can be easily and reliably elicited in the laboratory, together with their sturdiness for experimental manipulation and the accessibility of their nervous system for intracellular electrophysiological recordings in the intact animal, make decapod crustaceans excellent experimental subjects for investigating the neurobiology of visually guided behaviors. Investigations of crustaceans have elucidated the general structure of their eyes and some of their specializations, the anatomical organization of the main brain areas involved in visual processing and their retinotopic mapping of visual space, and the morphology, physiology, and stimulus feature preferences of a number of well-identified classes of neurons, with emphasis on motion-sensitive elements. This anatomical and physiological knowledge, in connection with results of behavioral experiments in the laboratory and the field, are revealing the neural circuits and computations involved in important visual behaviors, as well as the substrate and mechanisms underlying visual memories in decapod crustaceans.

Subjects

  • Invertebrate Neurobiology

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription