Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Neuroscience. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 29 November 2020

Physiology of Color Vision in Primateslocked

  • Robert ShapleyRobert ShapleyCenter for Neural Science, New York University

Summary

Color perception in macaque monkeys and humans depends on the visually evoked activity in three cone photoreceptors and on neuronal post-processing of cone signals. Neuronal post-processing of cone signals occurs in two stages in the pathway from retina to the primary visual cortex. The first stage, in in P (midget) ganglion cells in the retina, is a single-opponent subtractive comparison of the cone signals. The single-opponent computation is then sent to neurons in the Parvocellular layers of the Lateral Geniculate Nucleus (LGN), the main visual nucleus of the thalamus. The second stage of processing of color-related signals is in the primary visual cortex, V1, where multiple comparisons of the single-opponent signals are made. The diversity of neuronal interactions in V1cortex causes the cortical color cells to be subdivided into classes of single-opponent cells and double-opponent cells. Double-opponent cells have visual properties that can be used to explain most of the phenomenology of color perception of surface colors; they respond best to color edges and spatial patterns of color. Single opponent cells, in retina, LGN, and V1, respond to color modulation over their receptive fields and respond best to color modulation over a large area in the visual field.

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription