Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, NEUROSCIENCE (oxfordre.com/neuroscience). (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 31 October 2020

Motion Processing in Primateslocked

  • Tyler S. ManningTyler S. ManningUniversity of California Davis
  •  and Kenneth H. BrittenKenneth H. BrittenUniversity of California Davis

Summary

The ability to see motion is critical to survival in a dynamic world. Decades of physiological research have established that motion perception is a distinct sub-modality of vision supported by a network of specialized structures in the nervous system. These structures are arranged hierarchically according to the spatial scale of the calculations they perform, with more local operations preceding those that are more global. The different operations serve distinct purposes, from the interception of small moving objects to the calculation of self-motion from image motion spanning the entire visual field. Each cortical area in the hierarchy has an independent representation of visual motion. These representations, together with computational accounts of their roles, provide clues to the functions of each area. Comparisons between neural activity in these areas and psychophysical performance can identify which representations are sufficient to support motion perception. Experimental manipulation of this activity can also define which areas are necessary for motion-dependent behaviors like self-motion guidance.

Subjects

  • Sensory and Motor Systems

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription