Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Physics. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 18 April 2024

Ultimate Colliderslocked

Ultimate Colliderslocked

  • Vladimir D. ShiltsevVladimir D. ShiltsevFermi National Accelerator Laboratory

Summary

Understanding the universe critically depends on the fundamental knowledge of particles and fields, which represents a central endeavor of modern high-energy physics. Energy frontier particle colliders—arguably, among the largest, most complex, and advanced scientific instruments of modern times—for many decades have been at the forefront of scientific discoveries in high-energy physics. Because of advances in technology and breakthroughs in beam physics, the colliding beam facilities have progressed immensely and now operate at energies and luminosities many orders of magnitude greater than the pioneering instruments of the early 1960s.

While the Large Hadron Collider and the Super-KEKB factory represent the frontier hadron and lepton colliders of today, respectively, future colliders are an essential component of a strategic vision for particle physics. Conceptual studies and technical developments for several exciting near- and medium-term future collider options are underway internationally. Analysis of numerous proposals and studies for far-future colliders indicate the limits of the collider beam technology due to machine size, cost, and power consumption, and call for a paradigm shift of particle physics research at ultrahigh energy but low luminosity colliders approaching or exceeding 1 PeV center-of-mass energy scale.

Subjects

  • Accelerators and Beams

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription