Large-scale U.S. government support of scientific research began in World War II with physics, and rapidly expanded in the postwar era to contribute strongly to the United States’ emergence as the world’s leading scientific and economic superpower in the latter half of the 20th century. Vannevar Bush, who directed President Franklin Roosevelt’s World War II science efforts, in the closing days of the War advocated forcefully for U.S. government funding of scientific research to continue even in peacetime to support three important government missions of national security, health, and the economy. He also argued forcefully for the importance of basic research supported by the federal government but steered and guided by the scientific community. This vision guided an expanding role for the U.S. government in supporting research not only at government laboratories but also in non-government institutions, especially universities.
Although internationally comparable data are difficult to obtain, the U.S. government appears to be the single largest national funder of physics research. The U.S. government support of physics research comes from many different federal departments and agencies. Federal agencies also invest in experimental development based on research discoveries of physics. The Department of Energy’s (DOE) Office of Science is by far the dominant supporter of physics research in the United States, and DOE’s national laboratories are the dominant performers of U.S. government-supported physics research. Since the 1970s, U.S. government support of physics research has been stagnant with the greatest growth in U.S. government research support having shifted since the 1990s to the life sciences and computer sciences.
Article
The Evolution of Public Funding of Science in the United States From World War II to the Present
Kei Koizumi
Article
Physics-to-Technology Partnerships in the Semiconductor Industry
Robert Doering
The development of physics over the past few centuries has increasingly enabled the development of numerous technologies that have revolutionized society. In the 17th century, Newton built on the results of Galileo and Descartes to start the quantitative science of mechanics. The fields of thermodynamics and electromagnetism were developed more gradually in the 18th and 19th centuries. Of the big physics breakthroughs in the 20th century, quantum mechanics has most clearly led to the widest range of new technologies. New scientific discovery and its conversion to technology, enabling new products, is typically a complex process. From an industry perspective, it is addressed through various R&D strategies, particularly those focused on optimization of return on investment (ROI) and the associated risk management. The evolution of such strategies has been driven by many diverse factors and related trends, including international markets, government policies, and scientific breakthroughs. As a result, many technology-creation initiatives have been based on various types of partnerships between industry, academia, and/or governments. Specific strategies guiding such partnerships are best understood in terms of how they have been developed and implemented within a particular industry. As a consequence, it is useful to consider case studies of strategic R&D partnerships involving the semiconductor industry, which provides a number of instructive examples illustrating strategies that have been successful over decades. There is a large quantity of literature on this subject, in books, journal articles, and online.