Thermodynamics gives rise to a number of conceptual issues that have been explored by both physicists and philosophers. One source of contention is the nature of thermodynamics itself. Is it what physicists these days would call a resource theory, that is, a theory about how agents with limited means of manipulating a physical system can exploit its physical properties to achieve desired ends, or is it a theory of the basic properties of matter, independent of considerations of manipulation and control? Another source of contention is the relation between thermodynamics and statistical mechanics. It has been recognized since the 1870s that the laws of thermodynamics, as originally conceived, cannot be strictly correct. Because of fluctuations at the molecular level, processes forbidden by the original version second law of thermodynamics are continually occurring. The original version of the second law is to be replaced with a probabilistic version, according to which large-scale violations of the original second law are not impossible but merely highly improbable, and small-scale violations unpredictable, unable to be harnessed to systematically produce useful work. The introduction of probability talk raises the question of how we should conceive of probabilities in the context of deterministic physical laws.

### Article

Quantum Mechanics is one of the most successful theories of nature. It accounts for all known properties of matter and light, and it does so with an unprecedented level of accuracy. On top of this, it generated many new technologies that now are part of daily life. In many ways, it can be said that we live in a quantum world. Yet, quantum theory is subject to an intense debate about its meaning as a theory of nature, which started from the very beginning and has never ended. The essence was captured by Schrödinger with the cat paradox: why do cats behave classically instead of being quantum like the one imagined by Schrödinger? Answering this question digs deep into the foundation of quantum mechanics.
A possible answer is Dynamical Collapse Theories. The fundamental assumption is that the Schrödinger equation, which is supposed to govern all quantum phenomena (at the non-relativistic level) is only approximately correct. It is an approximation of a nonlinear and stochastic dynamics, according to which the wave functions of microscopic objects can be in a superposition of different states because the nonlinear effects are negligible, while those of macroscopic objects are always very well localized in space because the nonlinear effects dominate for increasingly massive systems. Then, microscopic systems behave quantum mechanically, while macroscopic ones such as Schrödinger’s cat behave classically simply because the (newly postulated) laws of nature say so.
By changing the dynamics, collapse theories make predictions that are different from quantum-mechanical predictions. Then it becomes interesting to test the various collapse models that have been proposed. Experimental effort is increasing worldwide, so far limiting values of the theory’s parameters quantifying the collapse, since no collapse signal was detected, but possibly in the future finding such a signal and opening up a window beyond quantum theory.

### Article

### Elise Crull

Quantum decoherence is a physical process resulting from the entanglement of a system with environmental degrees of freedom. The entanglement allows the environment to behave like a measuring device on the initial system, resulting in the dynamical suppression of interference terms in mutually commuting bases. Because decoherence processes are extremely fast and often practically irreversible, measurements performed on the system after system–environment interactions typically yield outcomes empirically indistinguishable from physical collapse of the wave function. That is: environmental decoherence of a system’s phase relations produces effective eigenstates of a system in certain bases (depending on the details of the interaction) through prodigious damping—but not destruction—of the system’s off-diagonal terms in those bases.
Although decoherence by itself is neither an interpretation of quantum physics nor indeed even new physics, there is much debate concerning the implications of this process in both the philosophical and the scientific literature. This is especially true regarding fundamental questions arising from quantum theory about the roles of measurement, observation, the nature of entanglement, and the emergence of classicality. In particular, acknowledging the part decoherence plays in interpretations of quantum mechanics recasts that debate in a new light.