1-4 of 4 Results

  • Keywords: solar wind x
Clear all


Solar-Wind Origin  

Steven R. Cranmer

The Sun continuously expels a fraction of its own mass in the form of a steadily accelerating outflow of ionized gas called the “solar wind.” The solar wind is the extension of the Sun’s hot (million-degree Kelvin) outer atmosphere that is visible during solar eclipses as the bright and wispy corona. In 1958, Eugene Parker theorized that a hot corona could not exist for very long without beginning to accelerate some of its gas into interplanetary space. After more than half a century, Parker’s idea of a gas-pressure-driven solar wind still is largely accepted, although many questions remain unanswered. Specifically, the physical processes that heat the corona have not yet been identified conclusively, and the importance of additional wind-acceleration mechanisms continue to be investigated. Variability in the solar wind also gives rise to a number of practical “space weather” effects on human life and technology, and there is still a need for more accurate forecasting. Fortunately, recent improvements in both observations (with telescopes and via direct sampling by space probes) and theory (with the help of ever more sophisticated computers) are leading to new generations of predictive and self-consistent simulations. Attempts to model the origin of the solar wind are also leading to new insights into long-standing mysteries about turbulent flows, magnetic reconnection, and kinetic wave-particle resonances.


Solar Cycle  

Lidia van Driel-Gesztelyi and Mathew J. Owens

The Sun’s magnetic field drives the solar wind and produces space weather. It also acts as the prototype for an understanding of other stars and their planetary environments. Plasma motions in the solar interior provide the dynamo action that generates the solar magnetic field. At the solar surface, this is evident as an approximately 11-year cycle in the number and position of visible sunspots. This solar cycle is manifest in virtually all observable solar parameters, from the occurrence of the smallest detected magnetic features on the Sun to the size of the bubble in interstellar space that is carved out by the solar wind. Moderate to severe space-weather effects show a strong solar cycle variation. However, it is a matter of debate whether extreme space-weather follows from the 11-year cycle. Each 11-year solar cycle is actually only half of a solar magnetic “Hale” cycle, with the configuration of the Sun’s large-scale magnetic field taking approximately 22 years to repeat. At the start of a new solar cycle, sunspots emerge at mid-latitude regions with an orientation that opposes the dominant large-scale field, leading to an erosion of the polar fields. As the cycle progresses, sunspots emerge at lower latitudes. Around solar maximum, the polar field polarity reverses, but the sunspot orientation remains the same, leading to a build-up of polar field strength that peaks at the start of the next cycle. Similar magnetic cyclicity has recently been inferred at other stars.


Solar Wind: Interaction With Planets  

Chris Arridge

The interaction between the solar wind and planetary bodies in our solar system has been investigated since well before the space age. The study of the aurora borealis and australis was a feature of the Enlightenment and many of the biggest names in science during that period had studied the aurora. Many of the early scientific discoveries that emerged from the burgeoning space program in the 1950s and 1960s were related to the solar wind and its interaction with planets, starting with the discovery of the Van Allen radiation belts in 1958. With the advent of deep space missions, such as Venera 4, Pioneer 10, and the twin Voyager spacecraft, the interaction of the solar wind other planets was investigated and has evolved into a sub-field closely allied to planetary science. The variety in solar system objects, from rocky planets with thick atmospheres, to airless bodies, to comets, to giant planets, is reflected in the richness in the physics found in planetary magnetospheres and the solar wind interaction. Studies of the solar wind-planet interaction has become a consistent feature of more recent space missions such as Cassini-Huygens (Saturn), Juno (Jupiter), New Horizons (Pluto) and Rosetta (67/P Churyumov–Gerasimenko), as well more dedicated missions in near-Earth space, such as Cluster and Magnetosphere Multiscale. The field is now known by various terms, including space (plasma) physics and solar-terrestrial physics, but it is an interdisciplinary science involving plasma physics, electromagnetism, radiation physics, and fluid mechanics and has important links with other fields of space science, including solar physics, planetary aeronomy, and planetary geophysics. Increasingly, the field is relying on high-performance computing and methods from data science to answer important questions and to develop predictive capabilities. The article explores the origins of the field, examines discoveries made during the heyday of the space program to the late 1970s and 1980s, and other hot topics in the field.


Solar-Wind Structure  

Mathew J. Owens

The hot solar atmosphere continually expands out into space to form the solar wind, which drags with it the Sun’s magnetic field. This creates a cavity in the interstellar medium, extending far past the outer planets, within which the solar magnetic-field dominates. While the physical mechanisms by which the solar atmosphere is heated are still debated, the resulting solar wind can be readily understood in terms of the pressure difference between the hot, dense solar atmosphere and the cold, tenuous interstellar medium. This results in an accelerating solar-wind profile which becomes supersonic long before it reaches Earth orbit. The large-scale structure of the magnetic field carried by the solar wind is that of an Archimedean spiral, owing to the radial solar-wind flow away from the Sun and the rotation of the magnetic footpoints with the solar surface. Within this relatively simple picture, however, is a range of substructure, on all observable time and spatial scales. Solar-wind flows are largely bimodal in character. “Fast” wind comes from open magnetic-field regions, which have a single connection to the solar surface. “Slow” wind, on the other hand, appears to come from the vicinity of closed magnetic field regions, which have both ends connected to the Sun. Interaction of fast and slow wind leads to patterns of solar-wind compression and expansion which sweep past Earth. Within this relatively stable structure of flows, huge episodic eruptions of solar material further perturb conditions. At the smaller scales, turbulent eddies create unpredictable variations in solar-wind conditions. These solar-wind structures are of great interest as they give rise to space weather that can adversely affect space- and ground-based technologies, as well as pose a threat to humans in space.