The holographic entanglement entropy proposals give an explicit geometric encoding of spatially ordered quantum entanglement in continuum quantum field theory. These proposals have been developed in the context of the AdS/CFT correspondence, which posits a quantum duality between gravitational dynamics in anti-de Sitter (AdS) space times and that of a conformal field theory (CFT) in one fewer dimension. The von Neumann entropy of a spatial region of the CFT is given by the area of a particular extremal surface in the dual geometry. This surprising connection between a fundamental quantum mechanical concept and a simple geometric construct has given deep insights into the nature of the holographic map and potentially holds an important clue to unraveling the mysteries of quantum gravity.
Article
Gravity and Quantum Entanglement
Mukund Rangamani and Veronika Hubeny
Article
Quantum Quench and Universal Scaling
Sumit R. Das
A quantum quench is a process in which a parameter of a many-body system or quantum field theory is changed in time, taking an initial stationary state into a complicated excited state. Traditionally “quench” refers to a process where this time dependence is fast compared to all scales in the problem. However in recent years the terminology has been generalized to include smooth changes that are slow compared to initial scales in the problem, but become fast compared to the physical scales at some later time, leading to a breakdown of adiabatic evolution. Quantum quench has been recently used as a theoretical tool to study many aspects of nonequilibrium physics like thermalization and universal aspects of critical dynamics. Relatively recent experiments in cold atom systems have implemented such quench protocols, which explore dynamical passages through critical points, and study in detail the process of relaxation to a steady state. On the other hand, quenches which remain adiabatic have been explored as a useful technique in quantum computation.