Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Planetary Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 19 April 2024

Dust Devils on Earth and Marslocked

Dust Devils on Earth and Marslocked

  • Matthew R. BalmeMatthew R. BalmeThe Open University, School of Physical Sciences

Summary

Dust devils are rotating columns or cones of air, loaded with dust and other fine particles, that are most often found in arid or desert areas. They are common on both Mars and Earth, despite Mars’ very thin atmosphere. The smallest and least intense dust devils might last only a few 10s of seconds and be just a meters or two across. The largest dust devils can persist for hours and are intensely swirling columns of dust with “skirts” of sand at their base, 10s or more meters in diameter and hundreds of meters high; even larger examples have been seen on Mars. Dust devils on Earth have been documented for thousands of years, but scientific observations really began in the early 20th century, culminating in a period of intense research in the 1960s. The discovery of dust devils on Mars was made using data from the NASA Viking lander and orbiter missions in the late 1970s and early 1980s and stimulated a renewed scientific interest in dust devils. Observations from subsequent lander, rover, and orbital missions show that Martian dust devils are common but heterogeneously distributed in space and time and have a significant effect on surface albedo (often leaving “tracks” on the surface) but do not appear to be triggers of global or major dust storms. An aspiration of future research is to synthesize observations and detailed models of dust devils to estimate more accurately their role in dust lifting at both local and global scales, both on Earth and on Mars.

Subjects

  • Planetary Atmospheres and Oceans

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription