1-2 of 2 Results  for:

  • Planetary Science Policy and Planning x
  • History of Ideas about Planets and Planetary Systems x
Clear all


James D. Burke and Erik M. Conway

The Jet Propulsion Laboratory (JPL) of the California Institute of Technology had its origins in a student project to develop rocket propulsion in the late 1930s. It attracted funding from the U.S. Army just prior to U.S. entry into World War II and became an Army missile research facility in 1943. Because of its origins as a contractor-operated Army research facility, JPL is the National Aeronautics and Space Administration’s (NASA) only contractor-operated field center. It remains a unit of the California Institute of Technology. In the decades since its founding, the laboratory, first under U.S. Army direction and then as a NASA field center, has grown and evolved into an internationally recognized institution generally seen as a leader in solar system exploration but whose portfolio includes substantial Earth remote sensing. JPL’s history includes episodes where the course of the laboratory’s development took turning points into new directions. After developing short-range ballistic missiles for the Army, the laboratory embarked on a new career in lunar and planetary exploration through the early 1970s and abandoned its original purpose as a propulsion technology laboratory. It developed the telecommunications infrastructure for planetary exploration too. It diversified into Earth science and astrophysics in the late 1970s and, due to a downturn in funding for planetary exploration, returned to significant amounts of defense work in the 1980s. The end of the Cold War between 1989 and 1991 resulted in a declining NASA budget, but support for planetary exploration actually improved within NASA management—as long as that exploration could be done more cheaply. This resulted in what is known as the “Faster Better Cheaper” period in NASA history. For JPL, this ended in 2000, succeeded by a return to more rigorous technical standards and increased costs.


Since the launch of Sputnik on October 4, 1957, the development of space activities has provided a kind of evidence for the conduct of human affairs, to the point of neglecting to question these activities from an ethical point of view: only since the beginning of the 2000s has a real ethical interrogation within the space community (French Space Agency, International Space University, COPUOS) been developed, in parallel with international law. Taking advantage of a rich cultural background and a cooperative sustained effort, space ethics contributes, for example, to better management of debris orbiting the Earth, evaluation of the social impacts of observation satellite systems, and the arrival of new private entrepreneurs apparently less aware of the impacts of managing space as a common heritage of humanity. If space law provides a possible framework and a set of principles for the current and future management of space activities, ethical principles must be considered to accurately assess their reasons for being and their consequences. The following questions are pertinent today: Has space become a trash can? Is space “Big Brother’s” ally? Is space for sale? Should space be explored at any cost? These issues require special expertise of the situation (e.g., the distribution of debris around the Earth, the capabilities of observation satellites); consideration of the global, dual (civil, military) nature of space; and reference to ethical principles (responsibility, vigilance). Human space flight, space tourism, and the search for extraterrestrial life are also subject to ethical questioning. At the beginning of the 21st century, space ethics remained a goal for the space community.