Characteristics of minerals in primitive chondrites, micrometeorites, and interplanetary dust particles (IDPs) such as chemical composition, crystal structures, textures, size, and shape indicate that solids and gases hardly reached equilibrium in the solar nebula. They may record a part of physicochemical conditions where dust formed or altered in the solar nebula or their parent bodies. Even the presence or absence of the minerals constrain the conditions in which they can survive or disappear. On the basis of the thermodynamical equilibrium models, which succeeded in predicting minerals stable in each temperature and pressure condition, laboratory experiments have played crucial roles in understanding kinetically controlled processes, such as evaporation, condensation (nucleation and growth), and chemical reactions, and deducing formation and alteration conditions in the solar nebula and their parent bodies from observations of primitive extraterrestrial materials.
In laboratories, it is impossible to reproduce physicochemical conditions in the solar nebula mainly because of the limited laboratory timescales. Therefore, each experimental work focuses on a single process or reproduction of certain mineralogical characteristics observed in meteorites and IDPs. The kinetically controlled reactions of abundant minerals such as forsterite were examined by laboratory experiments of evaporation, gas–solid reaction, and condensation. Evaporation and condensation coefficients were determined based on the Hertz–Knudsen equation and nucleation theory, which are important parameters controlling timescales of reaction, temperature dependences, grain size or reaction volume, and chemical fractionation occurring in a limited timescale. In addition, chemical compositions and textures of amorphous metastable materials were systematically investigated by condensation experiments of nanoparticles. Various types of laboratory experiments and theoretical studies are complementary to each other for understanding the mineralogy of extraterrestrial materials and dust formation and evolution in the solar nebula.
Article
Experimental Studies of Condensation in the Solar Nebula and Circumstellar Outflows
Aki Takigawa
Article
Asteroid Ryugu and the Hayabusa2 Mission
Sei-ichiro Watanabe and Shota Kikuchi
The carbonaceous type (C-type) asteroid Ryugu is a near-Earth object measuring ~1 km in equatorial diameter. C-type asteroids of this size are seldom found in the near-Earth region, making Ryugu an invaluable target for a sample return mission. Studying Ryugu offers insights into the Solar System formation and the transportation of volatile components from the asteroid belt to the early Earth. The Hayabusa2 spacecraft, developed by the Japan Aerospace Explosion Agency (JAXA), was launched on an H-IIA rocket in December 2014. It reached Ryugu in June 2018, and for 17 months, it closely observed the asteroid using optical and thermal imagers, a near-infrared spectrometer, and a laser altimeter. The spacecraft deployed three small rovers and a lander onto Ryugu surface, allowing for in-depth imaging and measurements. Furthermore, Hayabusa2 executed two precise touchdowns on different regions of the asteroid for sampling and initiated an impact experiment that created an artificial crater on Ryugu. During the second touchdown, subsurface materials ejected from the artificial crater were collected. Hayabusa2 departed from Ryugu in November 2019 and returned a capsule containing Ryugu samples to Earth in December 2020. Having successfully completed its sample return mission, Hayabusa2 is now en route to its next objective: a rendezvous with a small, rapidly rotating asteroid in July 2031.
Ryugu is a rubble-pile asteroid, formed through the re-accumulation of fragments of a disrupted parent asteroid in the inner main asteroid belt. Its distinct spinning-top shape was likely molded by landslides, triggered by rapid rotation about ten million years after its formation. Chemically, Ryugu’s surface material closely resembles that of CI (Ivuna-type) carbonaceous chondrites, known for their primitive compositions. The high porosity of Ryugu particles hints at a past presence of ice. Moreover, the plentiful carbonates, combined with the limited presence of high-temperature inclusions larger than 30 μm, suggest that Ryugu’s parent body originated in the outer Solar System, likely beyond the Saturn orbit. Within a few million years following the formation of the Solar System, gravitational interactions with giant planets may have scattered this parent body to the inner main asteroid belt. The decay heat from the short-lived radionuclide, 26Al, then facilitated aqueous alteration of the parent body and led to the genesis of diverse organic compounds. Many low-albedo asteroids in the main belt share spectra similarities with Ryugu. This implies that the structural water in phyllosilicates and organic matter could have been transported to the early Earth through dynamical and collisional evolution of these objects.
Article
Water Ice Permafrost on Mars and on the Moon
Maxim Litvak and Anton Sanin
The Moon and Mars are the most explored planetary bodies in the solar system. For the more than 60 years of the space era, dozens of science robotic missions have explored the Moon and Mars. The primary scientific goal for many of these missions was declared to be a search for surface or ground water/water ice and gaining an understanding of its distribution and origin.
Today, for the Moon, the focus of scientific exploration has moved to the lunar polar regions and permanently shadowed regions (PSRs). PSRs do not receive any direct sunlight and are frozen at very low temperatures (< 120 K), acting as cold traps. They are considered to be a storehouse that preserves records of the solar system’s evolution by trapping water ice and potentially other volatile deposits brought by comets and asteroids over billions of years.
For Mars, the water/water ice search was part of an attempt to find traces of ancient extraterrestrial life and possibly to understand how life appeared on Earth. Current Mars is cold and dry, but its high latitudes and some equatorial regions are enriched with surface and subsurface water ice. Scientists argue that oceans could have existed on ancient Mars if it was warm and wet and that different life forms could have originated similar to Earth’s. If this is the case, then biomarkers could be preserved in the Martian ground ice depositions.
Another popular idea that ties water ice permafrost on the Moon and Mars is related to the expected future human expansion to deep space. The Moon and Mars are widely considered to be the first destinations for future manned space-colony missions or even space-colony missions. In this scenario, the long-term presence and survival of astronauts on the lunar or Martian surface strongly depend on in situ resource utilization (ISRU). Water ice is at the top of the ISRU list because it could be used as water for astronauts’ needs. Its constituents, oxygen and hydrogen, could be used for breathing and for rocket fuel production, respectively.
The Moon is the closest body to Earth and discussion about presence of water ice on the Moon has both scientific and practical interest, especially for planning manned space missions. The focus further in space is on how subsurface water ice is distributed on Mars. A related topic is the debates about whether ancient Mars was wet and warm or if, for most of its history, the Martian surface was covered with glaciers. Finally, there are fundamental questions that should be answered by upcoming Mars and Moon missions.
Article
The Recognition of Meteorites and Ice Ages
Alan E. Rubin
Two important scientific questions that confronted 18th- and 19th-century naturalists were whether continental glaciation had occurred thousands of years earlier and whether extraterrestrial rocks occasionally fell to Earth. Eventual recognition of these hypotheses as real phenomena resulted from initial reports by nonprofessionals, subsequent investigation by skeptical scientists, and vigorous debate. Evidence that kilometer-thick glaciers had once covered Northern Europe and Canada included (a) the resemblance of scratched and polished rocks near mountain glaciers to those located in unglaciated U-shaped valleys; (b) the similarity of poorly sorted rocks and debris within “drift deposits” (moraines) to the sediment load of glaciers; and (c) the discovery of freezing meltwater at the base of glaciers, hypothesized to facilitate their movement. Three main difficulties naturalists had with accepting the notion that rocks fell from the sky were that (a) meteorite falls are localized events, generally unwitnessed by professional scientists; (b) mixed in with reports of falling rocks were fabulous accounts of falling masses of blood, flesh, milk, gelatin, and other substances; and (c) the phenomenon of falling rocks could neither be predicted nor verified by experiment. Five advances leading to the acceptance of meteorites were (a) Ernst Chladni’s 1794 treatise linking meteors, fireballs, and falling rocks; (b) meteor observations conducted in 1798 showing the high altitudes and enormous velocities of their meteoroid progenitors; (c) a spate of several widely witnessed meteorite falls between 1794 and 1807 in Europe, India, and America; (d) chemical analyses of several meteorites by Edward Charles Howard in 1802, showing all contained nickel (which is rare in the Earth’s crust); and (e) the discoveries of four asteroids between 1801 and 1807, providing a plausible extraterrestrial source for meteorites.
Article
Trans-Neptunian Dwarf Planets
Bryan J. Holler
The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter, and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as follows: Any non-satellite large enough to be rounded by its own gravity. Practically speaking, this means any non-satellite with a diameter larger than 400 km. In the trans-Neptunian region, there are more than 150 objects that satisfy this definition, based on published results and diameter estimates.
The dynamical structure of the trans-Neptunian region records the history of the migration of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures.
The largest TNO dwarf planets, those officially recognized by the IAU, plus others like Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of non-volatile species, such as H2O (water), NH3 (ammonia), and complex hydrocarbons, provides valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 point to ancient cryovolcanism caused by internal differentiation of ice from rock. Complex hydrocarbons, formed through radiation processing of surface ices, such as CH4, record the radiation histories of these objects and provide clues to their primordial surface compositions.
The dynamical, physical, and chemical diversity of the more than 150 TNO dwarf planets are key to understanding the formation of the solar system and its subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.
Article
Cosmogenic Nuclides
Rainer Wieler
Cosmogenic nuclides are produced by the interaction of energetic elementary particles of galactic cosmic radiation (GCR) and their secondaries with atomic nuclei in extraterrestrial or terrestrial material. In extraterrestrial samples cosmogenic nuclides produced by energetic particles emitted by the Sun (SCR) are also detectable. Cosmogenic nuclides usually are observable only for noble gas isotopes, whose natural abundances in the targets of interest are exceedingly low, with some radioactive isotopes having half-lives mostly in the million-year range, and a few stable nuclides of elements such as Gd and Sm whose abundance is appreciably modified by reactions with low-energy secondary cosmic-ray neutrons. In solid matter, the mean attenuation length of GCR protons is on the order of 50 cm. Therefore, cosmogenic nuclides are a major tool to study the history of small objects in space and of matter near the surfaces of larger parent bodies. A classical application is to measure “exposure ages” of meteorites, that is, the time they spent as a small body in interplanetary space. In some cases, the previous history of the future meteorite in its parent-body regolith can also be constrained. Such information helps to understand delivery mechanisms of meteorites from their parent asteroids (mainly from the main belt) or parent planets, and to constrain the number of ejection events responsible for the meteorites in collections worldwide. Cosmogenic nuclides in lunar samples from known depths of up to ~2 m serve to study the deposition and mixing history of the lunar regolith over hundreds of million years, as well as to calibrate nuclide production models. Present and future sample return missions rely on cosmogenic nuclide measurements as important tools to constrain the sample’s exposure history or loss rates of its parent-body surfaces to space. First measurements of cosmogenic noble gas isotopes on the surface of Mars demonstrate that the exposure and erosional history of planetary bodies can be obtained by in situ analyses. Exposure ages of presolar grains in meteorites provide at present the only quantitative constraint of their presolar history. In some cases, irradiation effects of energetic particles from the early Sun can be detected in early solar system condensates, confirming that the early Sun was likely much more active than later in its history, as expected from observations of young stars. The increasing precision of modern isotope analyses also reveals tiny isotopic anomalies induced by cosmic-ray effects in several elements of interest in cosmochemistry, which need to be recognized and corrected for.
Cosmogenic nuclide studies rely on the knowledge of their production rates, which depend on the elemental composition of a sample and its “shielding” during irradiation, that is, its position within an irradiated object, and for meteorites their pre-atmospheric size. The physics of cosmogenic nuclide production is basically well understood and has led to sophisticated production models. They are most successful if a sample’s shielding can be constrained by the analyses of several cosmogenic nuclides with different depth dependencies of their production rates.
Cosmogenic nuclides are also an important tool in Earth sciences, although this is not a topic of this article. The foremost example is 14C produced in the atmosphere and incorporated into organic material, which is used for dating. Cosmogenic radionucuclides and noble gases produced in situ in near-surface samples, mostly by secondary cosmic-ray neutrons, are an important tool in quantitative geomorphology and related fields.
Article
Mass Erosion and Transport on Cometary Nuclei, as Found on 67P/Churyumov-Gerasimenko
Wing-Huen Ip
The Rosetta spacecraft rendezvoused with comet 67P/Churyumov-Gerasimenko in 2014–2016 and observed its surface morphology and mass loss process. The large obliquity (52°) of the comet nucleus introduces many novel physical effects not known before. These include the ballistic transport of dust grains from the southern hemisphere to the northern hemisphere during the perihelion passage, thus shaping the dichotomy of two sides, with the northern hemisphere largely covered by dust layers from the recycled dusty materials (back fall) and the southern hemisphere consisting mostly of consolidated terrains. A significant amount of surface material up to 4–10 m in depth could be transferred across the nucleus surface in each orbit. New theories of the physical mechanisms driving the outgassing and dust ejection effects are being developed. There is a possible connection between the cometary dust grains and the fluffy aggregates and pebbles in the solar nebula in the framework of the streaming-instability scenario. The Rosetta mission thus succeeded in fulfilling one of its original scientific goals concerning the origin of comets and their relation to the formation of the solar system.
Article
Saturn’s Rings
Larry W. Esposito
Saturn’s rings are not only a beautiful and enduring symbol of space, but astronomers’ best local laboratory for studying phenomena in thin cosmic disks like those where planets formed. All the giant planets have ring systems. Saturn’s are the biggest and brightest. Saturn’s rings are made of innumerable icy particles, ranging from the size of dust to that of football stadiums. Galileo discovered Saturn’s rings with his newly invented telescope, but they were not explained until Huygens described them as thin, flat disks surrounding the planet. In the space age, rings were found around the other giant planets in our solar system. Rings have been seen around asteroids and likely exist around exoplanets. Many of the ring structures seen are created by gravity from Saturn’s moons. Rings show both ongoing aggregation and disaggregation. After decades of study from space and by theoretical analysis, some puzzles still remain unexplained. There is evidence for youthful rings from Cassini results, but no good theory to explain their recent origin. A future Saturn Ring Observer mission would be able to determine the direct connections between the individual ring physical properties and the origin and evolution of larger structures.
Article
The Lunar Dust Puzzle
Alexander V. Zakharov
The Moon was the first extraterrestrial body to attract the attention of space pioneers. It has been about half a century since an active lunar exploration campaign was carried out. At that time, a series of Russian and American automatic landing vehicles and the American manned Apollo Program carried out an unprecedented program of lunar exploration in terms of its saturation and volume. Unique breakthrough data on the lunar regolith and plasma environment were obtained, a large number of experiments were carried out using automated and manned expeditions, and more than 300 kg of lunar regolith and rock samples were delivered to Earth for laboratory research. A wealth of experience has been accumulated by performing direct human activities on the lunar surface. At the same time, the most unexpected result of the studies was the detection of a glow above the surface, recorded by television cameras installed on several lunar landers. The interpretation of this phenomenon led to the conclusion that sunlight is scattered by dust particles levitating above the surface of the Moon. When the Apollo manned lunar exploration program was being prepared, this fact was already known, and it was taken into account when developing a program for astronauts’ extravehicular activities on the lunar surface, conducting scientific research, and ground tests. However, despite preparations for possible problems associated with lunar dust, according to American astronauts working on the lunar surface, the lunar dust factor turned out to be the most unpleasant in terms of the degree of impact on the lander and its systems, on the activities of astronauts on the surface, and on their health.
Over the past decades, theoretical and experimental model studies have been carried out aimed at understanding the nature of the lunar horizon glow. It turned out that this phenomenon is associated with the complex effect of external factors on the lunar regolith, as a result of which there are a constant processing and grinding of the lunar regolith to particles of micron and even submicron sizes. Particles of lunar regolith that are less than a millimeter in size are commonly called lunar dust. As a result of the influence of external factors, the upper surface of the regolith acquires an electric charge, and a cloud of photoelectrons and a double layer are formed above the illuminated surface. Coulomb forces in the electric field of this layer, acting on microparticles of lunar dust, under certain conditions are capable of tearing microparticles from the surface of the regolith. These dust particles, near-surface plasma, and electrostatic fields form the near-surface dusty plasma exosphere of the Moon. The processes leading to the formation of regolith and microparticles on the Moon, their separation from the surface, and further dynamics above the surface include many external factors affecting the Moon and physical processes on the surface and near-surface dusty plasma exosphere. As a result of the research carried out, a lot has been understood, but many unsolved problems remain. Recently, since the space agencies of the leading space powers have been turning their attention to intensive research and subsequent exploration of the Moon, interest in the processes associated with the dynamics of lunar dust and its influence on landing vehicles and their engineering systems is increasing, and significant attention is being paid to reducing and mitigating the negative impact of lunar dust on the activities of astronauts and their health.
Article
Hot Planetary Coronas
Valery I. Shematovich and Dmitry V. Bisikalo
The uppermost layers of a planetary atmosphere, where the density of neutral particles is vanishingly low, are commonly called exosphere or planetary corona. Since the atmosphere is not completely bound to the planet by the planetary gravitational field, light atoms, such as hydrogen and helium, with sufficiently large thermal velocities can escape from the upper atmosphere into interplanetary space. This process is commonly called Jeans escape and depends on the temperature of the ambient atmospheric gas at an altitude where the atmospheric gas is virtually collisionless. The heavier carbon, nitrogen, and oxygen atoms can populate the coronas and escape from the atmospheres of terrestrial planets only through nonthermal processes such as photo- and electron-impact energizing, charge exchange, atmospheric sputtering, and ion pickup.
The observations reveal that the planetary coronae contain both a fraction of thermal neutral particles with a mean kinetic energy corresponding to the exospheric temperature and a fraction of hot neutral particles with mean kinetic energy much higher than that expected for the exospheric temperature. These suprathermal (hot) atoms and molecules are the direct manifestation of the nonthermal processes taking place in the atmospheres. These hot particles populate the hot coronas, take a major part in the atmospheric escape, produce nonthermal emissions, and react with the ambient atmospheric gas, triggering the hot atom chemistry.