1-10 of 28 Results  for:

Clear all

Article

The Space Asset Protocol  

Bernhard Schmidt-Tedd and Hazma Hameed

The Space Asset Protocol forms part of the Convention on International Interests in Mobile Equipment, the so-called Cape Town Convention of 2001, and was developed under the auspices of the International Institute for the Unification of Private Law (UNIDROIT) as a new secured transactions legal instrument to support asset-based financing of high-value, uniquely identifiable, mobile equipment in different sectors, offering an international approach independent from national legal instruments relating to the creation, registrations, priority, and enforcement of security rights in specific categories of assets. UNIDROIT has a long tradition in harmonization civil law instruments, but with the Space Asset Protocol it was the first time it was applied to space law matters. The overlap of classical property law aspects and international space law has turned out to be a particular challenge. The Space Asset Protocol was opened for signature on March 9, 2012, the concluding day of the Diplomatic Conference held for its adoption in Berlin; therefore, it is also called the Berlin Protocol. Since then, the space sector has undergone several fundamental changes. The rise of the so-called “new space economy” (NewSpace) opens up new fields of application for the Berlin Protocol. It is an option that is independent from the classical project-based financing of space projects. One of its aims is to make it easier for newcomers to the space sector to obtain financing. The Cape Town Convention entered into force in 2006, together with the Aircraft Protocol. The Space Asset Protocol was adopted in 2012, with ten ratifications necessary for its entry into force.

Article

Liability and Patent Protection for Space Activities in China  

Guoyu Wang and Xiao Ma

Space tort and patent protection are becoming more and more urgent legal issues, in light of rapidly developing space technology and commercialization of space activities. China’s space industry and activities have witnessed rapid progress recently, yet the development of China’s national space law system lags far behind China’s other achievements in space. Existing space laws in China have not expressly stipulated space tort and patent protection. Thus, addressing these issues has to resort to the relevant rules in other national laws or legal documents to recognize and confirm the doctrines of space tort liability, mitigation or exemption of liability, assignment and protection of space patents, etc. Therefore, the two main tasks or topics for the Chinese space law community are defining the applicability of the general rules and establishing a systematic national space law regime. The national space law regime will need to address the uncertainties, loopholes, and insufficiencies in the existing legal system regarding space tort and space patent protection. National tribunals, researchers, lawmakers, and policymakers will require references and guidance for dealing with space tort and patent protection. Meanwhile, international academia and practitioners need to better understand Chinese laws related to space activities, in order to facilitate international cooperation and the settlement of disputes.

Article

State Responsibility and Commercial Space Activities  

Danielle Ireland-Piper, Makaela Fehlhaber, and Alana Bonenfant

Commercial activity in outer space has increased. However, space is a dual-use environment, with both military and civilian applications. This raises the important question as to the extent to which a nation-state is responsible for the actions of commercial activities undertaken by corporate entities. The international law principles of state responsibility are complex. However, in some circumstances, these principles do create that potential for states to be liable where, for example, a corporate entity is a de facto organ of the state, or where a corporation acts on the instructions of a state or is under its control. The United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies, or Outer Space Treaty, provides some guidance on this question. Notwithstanding that, this is an uncertain area of the law, not least because of the complexity of space as an operating environment and complications in determining corporate nationality.

Article

Legal Issues Related to Satellite Orbits  

P.J. Blount

Orbits are unique geophysical features that are best understood as natural resources that are exploitable by humans for a variety of space activities. As with any human activity, the exploitation of these resources results in a variety of legal questions that are driven by their physical features and their uniqueness and scarcity. The law of orbits, or orbital law, is the framework of governance mechanisms that regulate the use of orbits from the perspective of their exploitation as natural resources. This legal framework seeks to govern the allocation of these resources among potential users, the coordination mechanisms among users to avoid conflict, and the protection of orbital resources from detrimental activities.

Article

Human-Robotic Cooperative Space Exploration  

Anne-Sophie Martin

Since the beginning of space exploration, outer space has fascinated, captivated and intrigued people’s mind. The launch of the first artificial satellite—Sputnik—in 1957 by the Soviet Union, and the first man on the Moon in 1969 represent two significant missions in the space exploration history. In 1972, Apollo 17 marked the last human program on the lunar surface. Nevertheless, several robotic spacecrafts traveled to the Moon such as the Soviet Luna 24 in 1976 or more recently China’s Chang’e 4 in 2019 which touched down on its far side, the first time for a space vehicle. The international space community is currently assessing a return to the Moon in 2024 and even beyond in the coming decades, toward the Red Planet, Mars. Robots and rovers, for instance, Curiosity, Philae, Rosetta or Perseverance, will continue to play a major role in space exploration by paving the way for future long-duration missions on celestial bodies. Landing humans on the Moon, Mars, or on other celestial bodies, needs robotics because there are significant challenges to overcome from technological and physiological perspectives. Therefore, the support of machines and artificial intelligence is essential for developing future deep space programs as well as to reach a sustainable space exploration. One can imagine future circumstances where robots and humans are collaborating together on the Moon’s surface or on celestial bodies to undertake scientific research, to extract and to analyze space resources for a possible in situ utilization, as well as to build sites for human habitation and work. Indeed, different situations can be considered: (a) a robot, located on a celestial body, operated by a human on Earth or aboard a space station; (b) the in situ operation of a robot by an astronaut; (c) the interaction between a robot in outer space, manipulated from Earth and an astronaut; (d) the interaction between a robot operated from space and an astronaut; (e) the interaction between a robot with an artificial intelligence component and an astronaut; (f) the interaction between two robots in the case of on-orbit servicing. The principles of free exploration and cooperation are two core concepts in the international space legal framework. Hence, it is necessary to analyse the provisions on the five United Nations space treaties in the context of “human-robotic” cooperation. In addition, the development of a Code of Conduct for space exploration, involving humans and robots, might be needed in order to clearly identify the missions using robotic systems (e.g., mission’s purpose, area of operations) and to foresee scenarios of responsibility and liability in case of damage. Lastly, a review of the dispute settlement mechanisms is particularly relevant as international claims related to human–robot activities will inevitably occur given the fact that their collaboration will increase as more missions are being planned on celestial bodies.

Article

Space Law & Policy: The U.K. Approach to the Regulation of Space Activities  

Christopher J. Newman

Space activity within the United Kingdom (U.K.) has undergone a significant period of change with successive governments viewing space as a significant source of economic growth. This has seen increasing attention being paid to both space policy and regulation. As a signatory to the Outer Space Treaty 1967, the U.K. is internationally responsible for the space activity of both its governmental and commercial entities. These obligations were initially discharged through the Outer Space Act 1986 and the licensing framework that emerged from that. The decision of the government to develop the capability to launch small satellites from within the U.K., coupled with the promise of high-altitude activities and horizontal launch, meant that action was needed to update the law and regulation of space activity within the U.K. The need for investment to fuel the ambition of the U.K. is set out in the National Space Strategy.

Article

Space Law: Overview  

Francis Lyall

Space law is composed of disparate elements of ordinary national laws and general international law. It has been created by the agreement of states as to the international law that should govern important technical and technological developments of the later 20th and the 21st century. That agreement is expressed in five general treaties; other treaty-level measures including as to the use of radio, declarations of principle, recommendations on the conduct of space activities, and by state practice. The United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), serviced by the UN Office of Outer Space Affairs (UNOOSA), plays a significant role in the development of the many aspects of space law, as do intergovernmental and nongovernmental agreements together with informal arrangements between space-active bodies.

Article

Space Law Education and Capacity-Building  

David Kuan-Wei Chen

Space activities can bring tremendous benefits to global development and humanity. For the safety, security, and long-term sustainability of outer space, activities and developments in the exploration and use of outer space must therefore be guided by the effective formulation, implementation, and enforcement of law and governance. Concerted and quality space law education and capacity-building efforts are necessary for the cultivation of competent professionals, scholars, and next-generation experts who are cognizant of the emerging issues and challenges posed by the proliferation of space activities and actors in the global commons of outer space. In order to fully grasp space law, it is important to possess a basic understanding of space technology, space applications, and the space environment in which the exploration and use of outer space take place. Not only should space law professionals and scholars be trained in law and have a deep understanding of especially public international law, but the approach to space law education and capacity-building must also be uniquely holistic and interdisciplinary. Hence, education and capacity-building can stimulate international development and cooperation in space activities and contribute to building expertise and capacity in countries with emerging space capabilities.

Article

Space Resource Utilization  

Angel Abbud-Madrid

Throughout human history, resources have been the driving force behind the exploration and settling of our planet and also the means to do so. Similarly, resources beyond Earth will make space the next destination in the quest for further exploration and economic expansion of our species. The multitude of celestial bodies surrounding Earth and the space between them hold a vast wealth of resources for a variety of applications. The unlimited solar energy, vacuum, radiation, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use on our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence on materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass, cost, and risk, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained surficial dust and rocks can serve for habitat and infrastructure construction, radiation protection, manufacturing parts, and growing crops. In the long term, material resources and solar energy could also be brought to Earth if obtaining these resources and meeting energy demands locally prove to be no longer economically or environmentally acceptable. However, just like on Earth, not all challenges to identify, extract, and utilize space resources are scientific and technological. As nations and private companies start working toward extracting extraterrestrial resources, an international legal framework and sound socioeconomic policies need to be put in place to ensure that these resources are used for the benefit of all humanity. Space resources promise to unleash an unprecedented wave of exploration and of economic prosperity by utilizing the full potential and value of space. As we embark on this new activity, it will be up to us, humans on planet Earth, to find the best alternatives to use resources beyond our planet effectively, responsibly, and sustainably to make this promise a reality.

Article

International Liability for Commercial Space Activities and Related Issues of Debris  

Elina Morozova and Alena Laurenava

Space activities are technically sophisticated and challenging endeavors involving high risk. Notwithstanding precautionary measures that are taken by commercial operators, damage may be caused during space objects’ launching, passing through air space, in-orbit maneuvering and operating, and de-orbiting. The rules and procedures aimed at ensuring the prompt payment of a full and equitable compensation for such damage constitute the international liability regime, which is of crucial importance in space law. The first reference to international liability for damage caused by space objects and their component parts on Earth, in air space, or in outer space can be traced back to the very beginning of the space era. In 1963, just a few years after the first ever artificial satellite was launched, international liability was declared by the United Nations General Assembly as one of the legal principles governing the activities of states in the exploration and use of outer space. It was later made legally binding by inclusion in the 1967 Outer Space Treaty and received further development in the 1972 Liability Convention. The latter is generally referred to as lex specialis when the interrelation between the two international treaties is described and introduces several provisions that treat liability for damage caused in specific circumstances somewhat differently. International space law imputes liability on states that launch or procure launchings of space objects and states from whose territory or facility space objects are launched. This does not, however, exclude liability for damage caused by space objects that are operated by private entities. Still, international liability for accidents involving commercial operators stays with the so-called launching states, as this term is defined by the Liability Convention for the same states that are listed in the Outer Space Treaty as internationally liable. Insurance is well known to address damages and liability issues, including those arising from commercial launches; however, it is not always mandatory. Frequently, space-related accidents involve nonfunctional space objects and their component parts, which are usually referred to as “space debris.” This may include spent rocket stages and defunct satellites, as well as fragments from their disintegration. Since the nonfunctional state of a space object does not change its legal status, the relevant provisions of international space law that are applicable to space objects continue to apply to what is called space debris. This means, in particular, that launching states are internationally liable for damage caused by space debris, including cases where such debris was generated by private spacecraft. The probability of liability becomes even higher when it comes to active space debris removal. Such space activities, which are extensively developed by private companies, are inextricably linked to potential damage. Yet, practical problems arise with identification of space debris and, consequently, an efficient implementation of the liability regime.