1-10 of 21 Results  for:

  • Planet Formation x
Clear all

Article

Experimental Studies of Condensation in the Solar Nebula and Circumstellar Outflows  

Aki Takigawa

Characteristics of minerals in primitive chondrites, micrometeorites, and interplanetary dust particles (IDPs) such as chemical composition, crystal structures, textures, size, and shape indicate that solids and gases hardly reached equilibrium in the solar nebula. They may record a part of physicochemical conditions where dust formed or altered in the solar nebula or their parent bodies. Even the presence or absence of the minerals constrain the conditions in which they can survive or disappear. On the basis of the thermodynamical equilibrium models, which succeeded in predicting minerals stable in each temperature and pressure condition, laboratory experiments have played crucial roles in understanding kinetically controlled processes, such as evaporation, condensation (nucleation and growth), and chemical reactions, and deducing formation and alteration conditions in the solar nebula and their parent bodies from observations of primitive extraterrestrial materials. In laboratories, it is impossible to reproduce physicochemical conditions in the solar nebula mainly because of the limited laboratory timescales. Therefore, each experimental work focuses on a single process or reproduction of certain mineralogical characteristics observed in meteorites and IDPs. The kinetically controlled reactions of abundant minerals such as forsterite were examined by laboratory experiments of evaporation, gas–solid reaction, and condensation. Evaporation and condensation coefficients were determined based on the Hertz–Knudsen equation and nucleation theory, which are important parameters controlling timescales of reaction, temperature dependences, grain size or reaction volume, and chemical fractionation occurring in a limited timescale. In addition, chemical compositions and textures of amorphous metastable materials were systematically investigated by condensation experiments of nanoparticles. Various types of laboratory experiments and theoretical studies are complementary to each other for understanding the mineralogy of extraterrestrial materials and dust formation and evolution in the solar nebula.

Article

Nucleosynthetic Isotope Anomalies in Cosmochemistry and Geochemistry  

Katherine Bermingham and Brad Meyer

Nucleosynthetic isotope anomalies provide some of the most informative sample-based constraints on the origin of the Solar System. An isotopic anomaly is a deviation in isotopic ratio relative to a standard that is made from natural terrestrial materials. Nucleosynthetic isotope anomalies are small (i.e., part-per-million scale) stable isotopic anomalies that are found in meteorites and some planetary bodies which are caused by the heterogeneous distribution of stardust in the protoplanetary disk. These subtle isotopic differences provide constraints on the combination of stellar precurors whose stardust comprises some of the matter in the protoplanetary disk. These anomalies also constrain how well stardust was mixed in the disk during accretion. Furthermore, discoveries of subtle nucleosynthetic isotope anomalies in samples from the Earth’s mantle have opened the door to the possibility of using nucleosynthetic isotope anomalies to trace Earth’s precursor material. New insights into the evolution of the nascent Solar System have come from interpreting nucleosynthetic isotope anomalies in the context of numerical stellar nucleosynthetic models and disk evolution models. This research is based on a thus far omnipresent isotopic dichotomy, termed the “NC–CC isotopic dichotomy”, that is recorded in the nucleosynthetic isotope composition of meteorites. This isotopic dichotomy has been interpreted to indicate that within the first few million years of Solar System history, the disk separated into two portions. This separation inhibited material in the presumptive inner Solar System (termed noncarbonaceous reservoir, NC group) from mixing with outer Solar System material (termed carbonaceous chondrite reservoir, CC group). This strict compositional division in the disk may have lasted until giant planet migration, which occurred at the tail end of the disk’s lifetime (<10 Ma of Solar System formation). Despite this application of the NC-CC isotopic dichotomy, fundamental questions remain about what part of Solar System history it preserves and if it can be used to reconstruct the architecture of the nascent Solar System. The applications of nucleosynthetic isotope anomalies in cosmochemistry and the insights these data provide into the evolution of the Solar System and Earth are discussed. The nucleosynthetic isotope anomalies that are recorded in bulk cosmochemical and terrestrial materials are summarized. The likely stellar origins of the presolar grains responsible for the isotopic anomalies on the bulk sample scale are distilled, along with the constraints these data place on the distribution of presolar material in the disk. A review of stellar nucleosynthesis, the formation of the Solar System, the conceptual framework used to interpret nucleosynthetic isotope data, and reported bulk sample nucleosynthetic isotope anomalies is first provided. Following this, a discussion on how nucleosynthetic isotope anomalies are used to constrain the early architecture of the Solar System is presented. To conclude, possible future directions that the scientific community may pursue by applying nucleosynthetic isotope anomalies to questions about terrestrial accretion are presented.

Article

Asteroid Ryugu and the Hayabusa2 Mission  

Sei-ichiro Watanabe and Shota Kikuchi

The carbonaceous type (C-type) asteroid Ryugu is a near-Earth object measuring ~1 km in equatorial diameter. C-type asteroids of this size are seldom found in the near-Earth region, making Ryugu an invaluable target for a sample return mission. Studying Ryugu offers insights into the Solar System formation and the transportation of volatile components from the asteroid belt to the early Earth. The Hayabusa2 spacecraft, developed by the Japan Aerospace Explosion Agency (JAXA), was launched on an H-IIA rocket in December 2014. It reached Ryugu in June 2018, and for 17 months, it closely observed the asteroid using optical and thermal imagers, a near-infrared spectrometer, and a laser altimeter. The spacecraft deployed three small rovers and a lander onto Ryugu surface, allowing for in-depth imaging and measurements. Furthermore, Hayabusa2 executed two precise touchdowns on different regions of the asteroid for sampling and initiated an impact experiment that created an artificial crater on Ryugu. During the second touchdown, subsurface materials ejected from the artificial crater were collected. Hayabusa2 departed from Ryugu in November 2019 and returned a capsule containing Ryugu samples to Earth in December 2020. Having successfully completed its sample return mission, Hayabusa2 is now en route to its next objective: a rendezvous with a small, rapidly rotating asteroid in July 2031. Ryugu is a rubble-pile asteroid, formed through the re-accumulation of fragments of a disrupted parent asteroid in the inner main asteroid belt. Its distinct spinning-top shape was likely molded by landslides, triggered by rapid rotation about ten million years after its formation. Chemically, Ryugu’s surface material closely resembles that of CI (Ivuna-type) carbonaceous chondrites, known for their primitive compositions. The high porosity of Ryugu particles hints at a past presence of ice. Moreover, the plentiful carbonates, combined with the limited presence of high-temperature inclusions larger than 30 μm, suggest that Ryugu’s parent body originated in the outer Solar System, likely beyond the Saturn orbit. Within a few million years following the formation of the Solar System, gravitational interactions with giant planets may have scattered this parent body to the inner main asteroid belt. The decay heat from the short-lived radionuclide, 26Al, then facilitated aqueous alteration of the parent body and led to the genesis of diverse organic compounds. Many low-albedo asteroids in the main belt share spectra similarities with Ryugu. This implies that the structural water in phyllosilicates and organic matter could have been transported to the early Earth through dynamical and collisional evolution of these objects.

Article

Planet Formation Through Gravitational Instabilities  

Ken Rice

It is now widely accepted that planets form in discs around young stars, with the most widely accepted planet formation scenario being a bottom-up process typically referred to as “core accretion.” The basic process involves a core growing through the accumulation of solids and, if it gets massive enough while there is still gas present in the disc, undergoing a runaway gas accretion phase to form a Jupiter-like gas giant. However, early models of this process suggested that the formation timescale for a Jupiter-like gas giant exceeded the lifetime of the gas disc, suggesting that massive, gas giant planets form via some alternative process. One possibility is that they form via direct gravitational collapse. During the earliest stages of star formation, the disc around a young star can have a mass that is comparable to that of the central protostar and can be susceptible to the growth of a gravitational instability. One outcome of such an instability is that the disc fragments into bound objects that can then contract to become gas giant planets. This would happen very early in the star formation process and is very rapid, overcoming the timescale problem. Subsequent work has, however, both illustrated that core accretion may operate on timescales shorter than disc lifetimes and that disc fragmentation is very unlikely to operate in the inner parts of planet-forming discs. Hence, it is very unlikely that disc fragmentation plays a role in the direct formation of close-in exoplanets. However, disc fragmentation may operate at large orbital radii and is expected to preferentially form either massive gas giant planets or brown dwarfs. Therefore, it is intriguing that exactly such objects are starting to be directly imaged at orbital radii where disc fragmentation may operate. Additionally, even if a self-gravitating phase doesn’t play a direct role in the formation of gas giant planets, it may play an indirect role in the planet formation process. The spiral density waves that develop due to the gravitational instability can act to enhance the local density of solids, potentially accelerating their collisional growth or leading to the direct gravitational collapse of the solid component of the disc. This could then provide some of the building blocks for planets that later form via core accretion.

Article

Formation, Composition, and Evolution of the Earth’s Core  

Francis Nimmo

The Earth’s core formed by multiple collisions with differentiated protoplanets. The Hf-W (hafnium-tungsten) isotopic system reveals that these collisions took place over a timescale of tens of megayears (Myr), in agreement with accretion simulations. The degree to which the iron and silicates re-equilibrated during each collision is uncertain and affects the apparent core age derived from tungsten isotopic measurements. Seismological data reveal that the core contains light elements in addition to Fe-Ni, and the outer core is more enriched in such elements than the inner core. Because O is excluded efficiently from solid iron, O is almost certainly an important constituent of the outer core. The identity of other elements is less certain, despite intensive measurements of their effects on seismic velocities, densities, and partitioning behavior at appropriate pressures and temperatures. Si and O are very likely present, with perhaps some S; C and H are less likely. Si and Mg may have exsolved over time, potentially helping to drive the geodynamo and producing a low-density layer at the top of the core. Radioactive elements (U, Th, K) are unlikely to be present in important concentrations. The cooling of the core is controlled by the mantle’s ability to extract heat. The geodynamo has existed for at least 3.5 gigayears (Gyr), placing a lower bound on the heat flow out of the core. Because the thermal conductivity of the core is uncertain by a factor of ~3, the lower bound on this heat flow is similarly uncertain. Once the inner core started to crystallize, additional sources of energy were available to power the geodynamo. Inner core crystallization likely started in the time range 0.5 to 2.0 Gyr Before Present (BP); paleomagnetic arguments have been advanced for inner core growth starting at several different epochs within this time range.

Article

Trans-Neptunian Dwarf Planets  

Bryan J. Holler

The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter, and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as follows: Any non-satellite large enough to be rounded by its own gravity. Practically speaking, this means any non-satellite with a diameter larger than 400 km. In the trans-Neptunian region, there are more than 150 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the history of the migration of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others like Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of non-volatile species, such as H2O (water), NH3 (ammonia), and complex hydrocarbons, provides valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 point to ancient cryovolcanism caused by internal differentiation of ice from rock. Complex hydrocarbons, formed through radiation processing of surface ices, such as CH4, record the radiation histories of these objects and provide clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the more than 150 TNO dwarf planets are key to understanding the formation of the solar system and its subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.

Article

Migration of Low-Mass Planets  

Frédéric S. Masset

Planet migration is the variation over time of a planet’s semimajor axis, leading to either a contraction or an expansion of the orbit. It results from the exchange of energy and angular momentum between the planet and the disk in which it is embedded during its formation and can cause the semimajor axis to change by as much as two orders of magnitude over the disk’s lifetime. The migration of forming protoplanets is an unavoidable process, and it is thought to be a key ingredient for understanding the variety of extrasolar planetary systems. Although migration occurs for protoplanets of all masses, its properties for low-mass planets (those having up to a few Earth masses) differ significantly from those for high-mass planets. The torque that is exerted by the disk on the planet is composed of different contributions. While migration was first thought to be invariably inward, physical processes that are able to halt or even reverse migration were later uncovered, leading to the realization that the migration path of a forming planet has a very sensitive dependence on the underlying disk parameters. There are other processes that go beyond the case of a single planet experiencing smooth migration under the disk’s tide. This is the case of planetary migration in low-viscosity disks, a fashionable research avenue because protoplanetary disks are thought to have very low viscosity, if any, over most of their planet-forming regions. Such a process is generally significantly chaotic and has to be tackled through high-resolution numerical simulations. The migration of several low-mass planets is also is a very fashionable topic, owing to the discovery by the Kepler mission of many multiple extrasolar planetary systems. The orbital properties of these systems suggest that at least some of them have experienced substantial migration. Although there have been many studies to account for the orbital properties of these systems, there is as yet no clear picture of the different processes that shaped them. Finally, some recently unveiled processes could be important for the migration of low-mass planets. One process is aero-resonant migration, in which a swarm of planetesimals subjected to aerodynamic drag push a planet inward when they reach a mean-motion resonance with the planet, while another process is based on so-called thermal torques, which arise when thermal diffusion in the disk is taken into account, or when the planet, heated by accretion, releases heat into the ambient gas.

Article

Saturn’s Rings  

Larry W. Esposito

Saturn’s rings are not only a beautiful and enduring symbol of space, but astronomers’ best local laboratory for studying phenomena in thin cosmic disks like those where planets formed. All the giant planets have ring systems. Saturn’s are the biggest and brightest. Saturn’s rings are made of innumerable icy particles, ranging from the size of dust to that of football stadiums. Galileo discovered Saturn’s rings with his newly invented telescope, but they were not explained until Huygens described them as thin, flat disks surrounding the planet. In the space age, rings were found around the other giant planets in our solar system. Rings have been seen around asteroids and likely exist around exoplanets. Many of the ring structures seen are created by gravity from Saturn’s moons. Rings show both ongoing aggregation and disaggregation. After decades of study from space and by theoretical analysis, some puzzles still remain unexplained. There is evidence for youthful rings from Cassini results, but no good theory to explain their recent origin. A future Saturn Ring Observer mission would be able to determine the direct connections between the individual ring physical properties and the origin and evolution of larger structures.

Article

Element Partitioning (Mineral-Melt, Metal-/Sulfide-Silicate) in Planetary Sciences  

Brandon Mahan

Element partitioning—at its most basic—is the distribution of an element of interest between two constituent phases as a function of some process. Major constituent elements generally affect the thermodynamic environment (chemical equilibrium) and therefore trace element partitioning is often considered, as trace elements are present in minute quantities and their equilibrium exchange reactions do not impart significant changes to the larger system. Trace elements are responsive to thermodynamic conditions, and thus they act as passive tracers of chemical reactions without appreciably influencing the bulk reactions themselves. In planetary sciences, the phase pairs typically considered are mineral-melt, metal-silicate, and sulfide-silicate, owing largely to the ubiquity of their coexistence in planetary materials across scales and context, from the micrometer-sized components of meteorites up to the size of planets (thousands of kilometers). It is common to speak of trace elements in terms of their tendency toward forming metallic, sulfidic, or oxide phases, and the terms “siderophile,” “chalcophile,” and “lithophile” (respectively) are used to define these tendencies under what is known as the Goldschmidt Classification scheme. The metric of an element’s tendency to concentrate into one phase relative to another is expressed as the ratio of its concentration (as a weight or molar fraction) in one phase over another, where convention dictates the reference frame as solid over liquid, and metal or sulfide over silicate; this mathematical term is the element’s partition coefficient, or distribution coefficient, between the two respective phases, D M Phase B Phase A (where M is the element of interest, most often reported as molar fraction), or simply D M . In general, trace elements obey Henry’s Law, where the element’s activity and concentration are linearly proportional. Practically speaking, this means that the element is sufficiently dilute in the system such that its atoms interact negligibly with one another compared to their interactions with major element phases, and thus the trace element’s partition coefficient in most settings is not appreciably affected by its concentration. The radius and charge of an element’s ionized species (its ionic radius and valence state)—in relation to either the major element ion for which it is substituting or the lattice site vacancy or interstitial space it is filling—generally determine the likelihood of trace element substitution or vacancy/interstitial fill (along with the net charge of the lattice space). The key energy consideration that underlies an element’s partitioning is the Gibbs free energy of reaction between the phases involved. Gibbs free energy is the change in internal energy associated with a chemical reaction (at a given temperature and pressure) that can be used to do work, and is denoted as Δ G rxn . Reactions with negative Δ G rxn values are spontaneous, and the magnitude of this negative value for a given phase, for example, a metal oxide, denotes the relative affinity of the metal toward forming oxides. That is to say, an element with a highly negative Δ G rxn for its oxide species at relevant pressure-temperature conditions will tend to be found in oxide and silicate minerals, that is, it will be lithophile (and vice versa for siderophile elements). Trace element partitioning systematics in mineral-melt and metal-/sulfide-silicate systems have boundless applications in planetary science. A growing collective understanding of the partition coefficients of elements has been built on decades of physical chemistry, deterministic theory, petrology, experimental petrology, and natural observations. Leveraging this immense intellectual, technical, and methodological foundation, modern trace element partitioning research is particularly aimed at constraining the evolution of plate tectonics on Earth (conditions and timing of onset), understanding the formation history of planetary materials such as chondrite meteorites and their constituents (e.g., chondrules), and de-convolving the multiply operating processes at play during the accretion and differentiation of Earth and other terrestrial planets.

Article

Condensation Calculations in Planetary Science and Cosmochemistry  

Denton S. Ebel

The Sun’s chemical and isotopic composition records the composition of the solar nebula from which the planets formed. If a piece of the Sun is cooled to 1,000 K at 1 mbar total pressure, a mineral assemblage is produced that is consistent with the minerals found in the least equilibrated (most chemically heterogeneous), oldest, and compositionally Sunlike (chondritic), hence most “primitive,” meteorites. This is an equilibrium or fractional condensation experiment. The result can be simulated by calculations using equations of state for hundreds of gaseous molecules, condensed mineral solids, and silicate liquids, the products of a century of experimental measurements and recent theoretical studies. Such calculations have revolutionized our understanding of the chemistry of the cosmos. The mid-20th century realization that meteorites are fossil records of the early solar system made chemistry central to understanding the origin of the Earth, Moon, and other bodies. Thus “condensation,” more generally the distribution of elements and isotopes between vapor and condensed solids and/or liquids at or approaching chemical equilibrium, came to deeply inform discussion of how meteoritic and cometary compositions bear on the origins of atmospheres and oceans and the differences in composition among the planets. This expansion of thinking has had profound effects upon our thinking about the origin and evolution of Earth and the other worlds of our solar system. Condensation calculations have also been more broadly applied to protoplanetary disks around young stars, to the mineral “rain” of mineral grains expected to form in cool dwarf star atmospheres, to the expanding circumstellar envelopes of giant stars, to the vapor plumes expected to form in giant planetary impacts, and to the chemically and isotopically distinct “shells” computed and observed to exist in supernovae. The beauty of equilibrium condensation calculations is that the distribution of elements between gaseous molecules, solids, and liquids is fixed by temperature, total pressure, and the overall elemental composition of the system. As with all sophisticated calculations, there are inherent caveats, subtleties, and computational difficulties. In particular, local equilibrium chemistry has yet to be consistently integrated into gridded, dynamical astrophysical simulations so that effects like the blocking of light and heat by grains (opacity), absorption and re-emission of light by grains (radiative transfer), and buffering of heat by grain evaporation/condensation are fed back into the physics at each node or instance of a gridded calculation over time. A deeper integration of thermochemical computations of chemistry with physical models makes the prospect of a general protoplanetary disk model as hopeful in the 2020s as a general circulation model for global climate may have been in the early 1970s.