Planetary aurorae are some of the most iconic and brilliant (in all senses of that word) indicators not only of the interconnections on Planet Earth, but that these interconnections pertain throughout the entire Solar System as well. They are testimony to the centrality of the Sun, not just in providing the essential sunlight that drives weather systems and makes habitability possible, but also in generating a high velocity wind of electrically charged particles—known as the Solar Wind—that buffets each of the planets in turn as it streams outward through interplanetary space. Aurorae are created when electrically charged particles—predominantly negatively charged electrons or positive ions such as protons, the nuclei of hydrogen—crash into the atoms and molecules of a planetary or lunar atmosphere. Such particles can excite the electrons in atoms and molecules from their ground state to higher levels. The atoms and molecules that have been excited by these high-energy collisions can then relax; the emitted radiation is at certain well-defined wavelengths, giving characteristic colors to the aurorae. Just how many particles, how much atmosphere, and what strength of magnetic field are required to create aurorae is an open question. But giant planets like Jupiter and Saturn have aurorae, as does Earth. Some moons also show these emissions. Overall, the aurorae of the Solar System are very varied, variable, and exciting.
12
Article
Planetary Aurorae
Steve Miller
Article
Planetary Spectroscopy
Alian Wang
Planetary spectroscopy uses physical methods to study the chemical properties of the geological materials on the planetary bodies in our solar system. This article will present twelve types of spectroscopy frequently used in planetary explorations. Their energy (or wavelength) varies from γ-ray (keV) to far-infrared (μm), which involves the transitions of nuclei, atoms, ions, and molecules in planetary materials. The article will cover the basic concept of the transition for each of the twelve types of spectroscopy, along with their legendary science discoveries made during the past planetary exploration missions by the international planetary science and engineering community.
The broad application of spectroscopy in planetary exploration is built upon the fact that only limited extraterrestrial materials were collected (meteorites, cosmic dust, and the returned samples by missions) that enabled the detailed investigations of their properties in laboratories, while spectroscopic measurements can be made on the objects of our solar system remotely and robotically, such as during the flyby, orbiting, lander, and rover missions. In this sense, the knowledge obtained by planetary spectroscopy has contributed to a major portion of planetary sciences.
In the coming era of space explorations, more powerful spacecraft will be sent out by mankind, go to deep space, and explore exotic places. Generations of new planetary science payloads, including planetary spectrometers, will be created and will fly. New sciences will be revealed.
Article
Solar Wind and Terrestrial Planets
Edik Dubinin, Janet G. Luhmann, and James A. Slavin
Knowledge about the solar wind interactions of Venus, Mars, and Mercury is rapidly expanding. While the Earth is also a terrestrial planet, it has been studied much more extensively and in far greater detail than its companions. As a result we direct the reader to specific references on that subject for obtaining an accurate comparative picture. Due to the strength of the Earth’s intrinsic dipole field, a relatively large volume is carved out in interplanetary space around the planet and its atmosphere. This “magnetosphere” is regarded as a shield from external effects, but in actuality much energy and momentum are channeled into it, especially at high latitudes, where the frequent interconnection between the Earth’s magnetic field and the interplanetary field allows some access by solar wind particles and electric fields to the upper atmosphere and ionosphere. Moreover, reconnection between oppositely directed magnetic fields occurs in Earth’s extended magnetotail—producing a host of other phenomena including injection of a ring current of energized internal plasma from the magnetotail into the inner magnetosphere—creating magnetic storms and enhancements in auroral activity and related ionospheric outflows. There are also permanent, though variable, trapped radiation belts that strengthen and decay with the rest of magnetospheric activity—depositing additional energy into the upper atmosphere over a wider latitude range. Virtually every aspect of the Earth’s solar wind interaction, highly tied to its strong intrinsic dipole field, has its own dedicated textbook chapters and review papers.
Although Mercury, Venus, Earth, and Mars belong to the same class of rocky terrestrial planets, their interaction with solar wind is very different. Earth and Mercury have the intrinsic, mainly dipole magnetic field, which protects them from direct exposure by solar wind. In contrast, Venus and Mars have no such shield and solar wind directly impacts their atmospheres/ionospheres. In the first case, intrinsic magnetospheric cavities with a long tail are found. In the second case, magnetospheres are also formed but are generated by the electric currents induced in the conductive ionospheres. The interaction of solar wind with terrestrial planets also varies due to changes caused by different distances to the Sun and large variations in solar irradiance and solar wind parameters. Other important planetary differences like local strong crustal magnetization on Mars and almost total absence of the ionosphere on Mercury create new essential features to the interaction pattern. Solar wind might be also a feasible driver for planetary atmospheric losses of volatiles, which could historically affect the habitability of the terrestrial planets.
Article
Steam Atmospheres and Magma Oceans on Planets
Keiko Hamano
A magma ocean is a global layer of partially or fully molten rocks. Significant melting of terrestrial planets likely occurs due to heat release during planetary accretion, such as decay heat of short-lived radionuclides, impact energy released by continuous planetesimal accretion, and energetic impacts among planetary-sized bodies (giant impacts). Over a magma ocean, all water, which is released upon impact or degassed from the interior, exists as superheated vapor, forming a water-dominated, steam atmosphere. A magma ocean extending to the surface is expected to interact with the overlying steam atmosphere through material and heat exchange.
Impact degassing of water starts when the size of a planetary body becomes larger than Earth’s moon or Mars. The degassed water could build up and form a steam atmosphere on protoplanets growing by planetesimal accretion. The atmosphere has a role in preventing accretion energy supplied by planetesimals from escaping, leading to the formation of a magma ocean. Once a magma ocean forms, part of the steam atmosphere would start to dissolve into the surface magma due to the high solubility of water into silicate melt. Theoretical studies indicated that as long as the magma ocean is present, a negative feedback loop can operate to regulate the amount of the steam atmosphere and to stabilize the surface temperature so that a radiative energy balance is achieved. Protoplanets can also accrete the surrounding
H
2
-rich disk gas. Water could be produced by oxidation of
H
2
by ferrous iron in the magma. The atmosphere and water on protoplanets could be a mixture of outgassed and disk-gas components.
Planets formed by giant impact would experience a global melting on a short timescale. A steam atmosphere could grow by later outgassing from the interior. Its thermal blanketing and greenhouse effects are of great importance in controlling the cooling rate of the magma ocean. Due to the presence of a runaway greenhouse threshold, the crystallization timescale and water budget of terrestrial planets can depend on the orbital distance from the host star. The terrestrial planets in our solar system essentially have no direct record of their earliest history, whereas observations of young terrestrial exoplanets may provide us some insight into what early terrestrial planets and their atmosphere are like. Evolution of protoplanets in the framework of pebble accretion remains unexplored.
Article
The Atmosphere of Titan
Athena Coustenis
Titan, Saturn’s largest satellite, is one of the most intriguing moons in our Solar System, in particular because of its dense and extended nitrogen-based and organic-laden atmosphere. Other unique features include a methanological cycle similar to the Earth’s hydrological one, surface features similar to terrestrial ones, and a probable under-surface liquid water ocean. Besides the dinitrogen main component, the gaseous content includes methane and hydrogen, which, through photochemistry and photolysis, produce a host of trace gases such as hydrocarbons and nitriles. This very advanced organic chemistry creates layers of orange-brown haze surrounding the satellite. The chemical compounds diffuse downward in the form of aerosols and condensates and are finally deposited on the surface. There is very little oxygen in the atmosphere, mainly in the form of H2O, CO, and CO2. The atmospheric chemical and thermal structure varies significantly with seasons, much like on Earth, albeit on much longer time scales. Extensive analysis of Titan data from ground, Earth-orbiting observatories, and space missions, like those returned by the 13-year operating Cassini-Huygens spacecraft, reveals a complex system with strong interactions among the atmosphere, the surface, and the interior. The processes operating in the atmosphere are informative of what occurs on Earth and give hints as to the origin and evolution of our outer Solar System.
Article
The Atmosphere of Uranus
Leigh N. Fletcher
Uranus provides a unique laboratory to test current understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere punctuated by storms, waves, and dark vortices, evolving slowly under the seasonal influence of Uranus’s extreme axial tilt. Condensables like methane and hydrogen sulphide play a crucial role in shaping circulation, clouds, and storm phenomena via latent heat release through condensation, strong equator-to-pole gradients suggestive of equatorial upwelling and polar subsidence, and the formation of stabilizing layers that may decouple different circulation and convective regimes as a function of depth. Phase transitions in the watery depths may also decouple Uranus’s atmosphere from motions within the interior. Weak vertical mixing and low atmospheric temperatures associated with Uranus’s negligible internal heat means that stratospheric methane photochemistry occurs in a unique high-pressure regime, decoupled from the influx of external oxygen. The low homopause also allows for the formation of an extensive ionosphere. Finally, the atmosphere provides a window on the bulk composition of Uranus—the ice-to-rock ratio, supersolar elemental and isotopic enrichments inferred from remote sensing, and future in situ measurements—providing key insights into its formation and subsequent migration.
As a cold, hydrogen-dominated, intermediate-sized, slowly rotating, and chemically enriched world, Uranus could be the closest and best example of atmospheric processes on a class of worlds that may dominate the census of planets beyond our own solar system. Future missions to the Uranian system must carry a suite of instrumentation capable of advancing knowledge of the time-variable circulation, composition, meteorology, chemistry, and clouds on this enigmatic “ice giant.”
Article
The Lower Ionosphere of Mars: Modeling and Effect of Dust
Varun Sheel
The study of planetary ionospheres helps us to understand the composition, losses, and electrical properties of the atmosphere. The structure of the ionosphere depends on the neutral gas composition as well. Models based on fundamental equations have been able to simulate the neutral and ion structure of the Martian atmosphere. These models couple chemical, physical, radiative, and dynamical processes at various levels of complexities.
The lower ionosphere (below 80 km) and its composition have not been observed and studied as comprehensively as the upper ionosphere. Most of our current understanding of the plasma environment in the lower atmosphere is based on theoretical models. Models indicate that Mars contains a D region, similar to that in the Earth’s ionosphere, produced primarily due to high-energy galactic cosmic rays that can penetrate to the lower altitudes. The D layer has been simulated to lie in the altitude range of ~25 to 35 km on the dayside ionosphere of Mars. A one-dimensional model, used to calculate the densities of 35 positive and negative ions, predicts hydrated ions to be dominant in the troposphere of Mars. Due to the variability of water vapor, these cluster ions show seasonal variability and can be measured by future experiments on Mars landers.
Dust is an important component of the climate of Mars, wherein dust storms are known to affect the temperatures and winds of the lower atmosphere. The inclusion of ion–dust interactions in the model for the Martian ionosphere has yielded important effects of dust storms on the ionosphere. It has been found that during dust storms, the ion densities can significantly diminish, reducing the total ion conductivity in the troposphere by an order of magnitude. Also, large electric fields could be generated due to the charging of dust in the ionosphere, leading to electric discharges and, possibly, lightning.
Article
The Planetary Boundary Layer of Mars
Aymeric Spiga
The planetary boundary layer of Mars is a crucial component of the Martian climate and meteorology, as well as a key driver of the surface-atmosphere exchanges on Mars. As such, it is explored by several landers and orbiters; high-resolution atmospheric modeling is used to interpret the measurements by those spacecrafts. The planetary boundary layer of Mars is particularly influenced by the strong radiative control of the Martian surface and, as a result, features a more extreme version of planetary boundary layer phenomena occurring on Earth. In daytime, the Martian planetary boundary layer is highly turbulent, mixing heat and momentum in the atmosphere up to about 10 kilometers from the surface. Daytime convective turbulence is organized as convective cells and vortices, the latter giving rise to numerous dust devils when dust is lifted and transported in the vortex. The nighttime planetary boundary layer is dominated by stable-layer turbulence, which is much less intense than in the daytime, and slope winds in regions characterized by uneven topography. Clouds and fogs are associated with the planetary boundary layer activity on Mars.
Article
The Structure and Dynamics of the Atmospheres of Pluto and Triton
Angela M. Zalucha and Jason Cook
In addition to ground-based observations beginning in the 1970s, NASA’s Voyager 2 spacecraft flew by Triton in 1989, and NASA’s New Horizons spacecraft flew by Pluto in 2015. Prior to the flyby of New Horizons, Pluto and Triton were termed “sister worlds” due to what appeared to be a high degree of similarity in solid-body density, surface ices, diameter, and surface pressures. Despite being small, cold, icy bodies, both Pluto and Triton have been found to have atmospheres that behave as a continuous fluid up to 300 km altitude above the surface and thereby have a defined temperature, surface pressure, and global general circulation (wind). The primary constituent of these atmospheres is molecular nitrogen, with methane and carbon monoxide comprising the largest abundances of trace gases. The surface pressure as measured in the 2010s on both worlds is of the order of 10 microbars (1 Pa = 10 µbar), for these exotic atmospheres exchange mass between sublimation of surface ice and deposition of nitrogen over the course of each body’s year. Ground-based stellar occultation measurements observed a dramatic change in surface pressure, which one study found was as much as a factor of two increase between 1988 and 2003 on Pluto, presumably due to Pluto’s seasonal volatile cycle. Voyager 2 observed plumes and surface “streaks” on Triton, while New Horizons observed dunes (indicating wind speeds of 1–10 m s−1) as well as streaks, evidently indicating the presence of surface and near-surface winds.
While wind velocity aloft has not been directly measured on Pluto or Triton, 3-D general circulation modeling studies of both worlds have shown zonal (east–west) wind speeds of the order of 10 m/s, meridional (north–south) wind speeds of the order of 1 m/s, and extremely weak vertical wind speeds.
In 2015, New Horizons showed that Pluto and Triton were much more different than previously thought. New Horizons uncovered many spectacular views of Pluto’s atmosphere. First, while hydrocarbon haze was observed on Triton, Pluto had multiple, very distinct stratified haze layers bearing a similar appearance to the layers of an onion. Second, Pluto’s surface elevation was found to be largely inhomogeneous (in contrast to Triton) in the form of a large depression (Sputnik Planitia). Third, the characteristics of the surface markings on Pluto were found to be different than the streaks observed on Triton, which has implications for surface wind patterns.
Further major discoveries made by New Horizons included evidence for many hydrocarbon species in trace concentrations, a lower than expected surface pressure, which could previously only be indirectly ascertained from ground-based observations, and a higher mixing ratio of methane at higher altitudes than at lower due to gravitational diffusive separation. Using radio occultation experiments (not conducted by Voyager 2 at Triton), New Horizons confirmed the existence of a stratosphere (temperature increasing with height) extending to 25 km altitude at both the entry and exit locations. The entry location had a shallow troposphere (temperature decreasing with height) extending to 3.5 km altitude above the surface, while the exit location did not.
Article
Water Ice at Mid-Latitudes on Mars
Frances E. G. Butcher
Mars’s mid-latitudes, corresponding approximately to the 30°–60° latitude bands in both hemispheres, host abundant water ice in the subsurface. Ice is unstable with respect to sublimation at Mars’s surface beyond the polar regions, but can be preserved in the subsurface at mid-to-high latitudes beneath a centimeters-to-meters-thick covering of lithic material. In Mars’s mid-latitudes, water ice is present as pore ice between grains of the martian soil (termed “regolith”) and as deposits of excess ice exceeding the pore volume of the regolith. Excess ice is present as lenses within the regolith, as extensive layers tens to hundreds of meters thick, and as debris-covered glaciers with evidence of past flow. Subsurface water ice on Mars has been inferred indirectly using numerous techniques including numerical modeling, observations of surface geomorphology, and thermal, spectral, and ground-penetrating radar analyses. Ice exposures have also been imaged directly by orbital and landed missions to Mars. Shallow pore ice can be explained by the diffusion and freezing of atmospheric water vapor into the regolith. The majority of known excess ice deposits in Mars’s mid-latitudes are, however, better explained by deposition from the atmosphere (e.g., via snowfall) under climatic conditions different from the present day. They are thought to have been emplaced within the last few million to 1 billion years, during large-scale mobilization of Mars’s water inventory between the poles, equator, and mid-latitude regions under cyclical climate changes. Thus, water ice deposits in Mars’s mid-latitudes probably host a rich record of geologically recent climate changes on Mars. Mid-latitude ice deposits are leading candidate targets for in situ resource utilization of water ice by future human missions to Mars, which may be able to sample the deposits to access such climate records. In situ water resources will be required for rocket fuel production, surface operations, and life support systems. Thus, it is essential that the nature and distribution of mid-latitude ice deposits on Mars are characterized in detail.
Article
Water Ice Permafrost on Mars and on the Moon
Maxim Litvak and Anton Sanin
The Moon and Mars are the most explored planetary bodies in the solar system. For the more than 60 years of the space era, dozens of science robotic missions have explored the Moon and Mars. The primary scientific goal for many of these missions was declared to be a search for surface or ground water/water ice and gaining an understanding of its distribution and origin.
Today, for the Moon, the focus of scientific exploration has moved to the lunar polar regions and permanently shadowed regions (PSRs). PSRs do not receive any direct sunlight and are frozen at very low temperatures (< 120 K), acting as cold traps. They are considered to be a storehouse that preserves records of the solar system’s evolution by trapping water ice and potentially other volatile deposits brought by comets and asteroids over billions of years.
For Mars, the water/water ice search was part of an attempt to find traces of ancient extraterrestrial life and possibly to understand how life appeared on Earth. Current Mars is cold and dry, but its high latitudes and some equatorial regions are enriched with surface and subsurface water ice. Scientists argue that oceans could have existed on ancient Mars if it was warm and wet and that different life forms could have originated similar to Earth’s. If this is the case, then biomarkers could be preserved in the Martian ground ice depositions.
Another popular idea that ties water ice permafrost on the Moon and Mars is related to the expected future human expansion to deep space. The Moon and Mars are widely considered to be the first destinations for future manned space-colony missions or even space-colony missions. In this scenario, the long-term presence and survival of astronauts on the lunar or Martian surface strongly depend on in situ resource utilization (ISRU). Water ice is at the top of the ISRU list because it could be used as water for astronauts’ needs. Its constituents, oxygen and hydrogen, could be used for breathing and for rocket fuel production, respectively.
The Moon is the closest body to Earth and discussion about presence of water ice on the Moon has both scientific and practical interest, especially for planning manned space missions. The focus further in space is on how subsurface water ice is distributed on Mars. A related topic is the debates about whether ancient Mars was wet and warm or if, for most of its history, the Martian surface was covered with glaciers. Finally, there are fundamental questions that should be answered by upcoming Mars and Moon missions.
12