1-6 of 6 Results  for:

  • Planetary Ionospheres and Magnetospheres x
Clear all

Article

George J. Flynn

Scattered sunlight from interplanetary dust particles, mostly produced by comets and asteroids, orbiting the Sun are visible at dusk or dawn as the Zodiacal Cloud. Impacts onto the space-exposed surfaces of Earth-orbiting satellites indicate that, in the current era, thousands of tons of interplanetary dust enters the Earth’s atmosphere every year. Some particles vaporize forming meteors while others survive atmospheric deceleration and settle to the surface of the Earth. NASA has collected interplanetary dust particles from the Earth’s stratosphere using high-altitude aircraft since the mid-1970s. Detailed characterization of these particles shows that some are unique samples of Solar System and presolar material, never affected by the aqueous and thermal processing that overprints the record of formation from the Solar Protoplanetary Disk in the meteorites. These particles preserve the record of grain and dust formation from the disk. This record suggests that many of the crystalline minerals, dominated by crystalline silicates (olivine and pyroxene) and Fe-sulfides, condensed from gas in the inner Solar System and were then transported outward to the colder outer Solar System where carbon-bearing ices condensed on the surfaces of the grains. Irradiation by solar ultraviolet light and cosmic rays produced thin organic coatings on the grain surfaces that likely aided in grain sticking, forming the first dust particles of the Solar System. This continuous, planet-wide rain of interplanetary dust particles can be monitored by the accumulation of 3He, implanted into the interplanetary dust particles by the Solar Wind while they were in space, in oceanic sediments. The interplanetary dust, which is rich in organic carbon, may have contributed important pre-biotic organic matter important to the development of life to the surface of the early Earth.

Article

Sarah Badman

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. Saturn’s magnetosphere is the region of space surrounding Saturn that is controlled by the planetary magnetic field. Saturn’s magnetic field is aligned to within 1 degree of the rotation axis and rotates with a period of ~10.7 h. The magnetosphere is compressed on the dayside by the impinging solar wind, and stretched into a long magnetotail on the nightside. Its surface, the magnetopause, is located where the internal and external plasma and magnetic pressures balance. As a result of the pressure distributions, the magnetopause has a bimodal distribution of standoff distance at the sub-solar point and is flattened over the poles relative to the equator. Radiation belts composed of trapped energetic electrons and protons are present in the inner magnetosphere. Their intensity is limited by the moons and rings that can absorb the energetic particles. The icy moons and rings, particularly the cryovolcanic moon Enceladus, are the main sources of mass in the form of water. When the water molecules are ionized they are confined to the equatorial plane by the rapidly rotating magnetic field. This mass-loading acts to distend the magnetic field lines from a dipolar configuration into a radially stretched magnetodisk, with an associated eastward-directed current. In situ measurements of plasma velocity indicate it generally lags behind the planetary rotation, introducing an azimuthal component of the magnetic field. Despite the alignment of the magnetic and rotation axes, so-called planetary period oscillations are ubiquitous in field and plasma measurements in the magnetosphere. Radial transport of plasma involves the centrifugal interchange instability in the inner magnetosphere and magnetic reconnection in the middle and outer magnetosphere. This allows mass from the moons and rings to be lost from the system. The outermost regions of the magnetosphere are also influenced by the surrounding solar wind through magnetic reconnection and viscous interactions. Acceleration via reconnection or other processes, or scattering of plasma into the atmosphere leads to auroral emissions detected at radio, infrared, visible, and ultraviolet wavelengths.

Article

Xin Cao and Carol Paty

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. A magnetosphere is formed by the interaction between the magnetic field of a planet and the high-speed solar wind. Those planets with a magnetosphere have an intrinsic magnetic field such as Earth, Jupiter, and Saturn. Mars, especially, has no global magnetosphere, but evidence shows that a paleo-magnetosphere existed billions of years ago and was dampened then due to some reasons such as the change of internal activity. A magnetosphere is very important for the habitable environment of a planet because it provides the foremost and only protection for the planet from the energetic solar wind radiation. The majority of planets with a magnetosphere in our solar system have been studied for decades except for Uranus and Neptune, which are known as ice giant planets. This is because they are too far away from us (about 19 AU from the Sun), which means they are very difficult to directly detect. Compared to many other space detections to other planets, for example, Mars, Jupiter, Saturn and some of their moons, the only single fly-by measurement was made by the Voyager 2 spacecraft in the 1980s. The data it sent back to us showed that Uranus has a very unusual magnetosphere, which indicated that Uranus has a very large obliquity, which means its rotational axis is about 97.9° away from the north direction, with a relative rapid (17.24 hours) daily rotation. Besides, the magnetic axis is tilted 59° away from its rotational axis, and the magnetic dipole of the planet is off center, shifting 1/3 radii of Uranus toward its geometric south pole. Due to these special geometric and magnetic structures, Uranus has an extremely dynamic and asymmetric magnetosphere. Some remote observations revealed that the aurora emission from the surface of Uranus distributed at low latitude locations, which has rarely happened on other planets. Meanwhile, it indicated that solar wind plays a significant impact on the surface of Uranus even if the distance from the Sun is much farther than that of many other planets. A recent study, using numerical simulation, showed that Uranus has a “Switch-like” magnetosphere that allows its global magnetosphere to open and close periodically with the planetary rotation. In this article, we will review the historic studies of Uranus’s magnetosphere and then summarize the current progress in this field. Specifically, we will discuss the Voyager 2 spacecraft measurement, the ground-based and space-based observations such as Hubble Space Telescope, and the cutting-edge numerical simulations on it. We believe that the current progress provides important scientific context to boost future ice giant detection.

Article

Francisco González-Galindo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2 +, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous measurements by different space missions. Numerical simulations by computational models able to simulate the processes that shape the ionosphere have also been commonly employed to obtain information about this region, to provide an interpretation of the observations and to fill their gaps. As a result, the Martian ionosphere is today the best known one after that of the Earth. However, there are still areas for which our knowledge is far from being complete. Examples are the details and balance of the mechanisms populating the nightside ionosphere, or a good understanding of the meteoric ionospheric layer and its variability.

Article

Ulrich R. Christensen

Since 1973 space missions carrying vector magnetometers have shown that most, but not all, solar system planets have a global magnetic field of internal origin. They have also revealed a surprising diversity in terms of field strength and morphology. While Jupiter’s field, like that of Earth, is dominated by a dipole moderately tilted relative to the planet’s spin axis, the fields of Uranus and Neptune are multipole-dominated, whereas those of Saturn and Mercury are highly symmetric relative to the rotation axis. Planetary magnetism originates from a dynamo process, which requires a fluid and electrically conducting region in the interior with sufficiently rapid and complex flow. The magnetic fields are of interest for three reasons: (i) they provide ground truth for dynamo theory, (ii) the magnetic field controls how the planet interacts with its space environment, for example, the solar wind, and (iii) the existence or nonexistence and the properties of the field enable us to draw inferences on the constitution, dynamics, and thermal evolution of the planet’s interior. Numerical simulations of the geodynamo, in which convective flow in a rapidly rotating spherical shell representing the outer liquid iron core of the Earth leads to induction of electric currents, have successfully reproduced many observed properties of the geomagnetic field. They have also provided guidelines on the factors controlling magnetic field strength and morphology. For numerical reasons the simulations must employ viscosities far greater than those inside planets and it is debatable whether they capture the correct physics of planetary dynamo processes. Nonetheless, such models have been adapted to test concepts for explaining magnetic field properties of other planets. For example, they show that a stable stratified conducting layer above the dynamo region is a plausible cause for the strongly axisymmetric magnetic fields of Mercury or Saturn.

Article

Edik Dubinin, Janet G. Luhmann, and James A. Slavin

Knowledge about the solar wind interactions of Venus, Mars, and Mercury is rapidly expanding. While the Earth is also a terrestrial planet, it has been studied much more extensively and in far greater detail than its companions. As a result we direct the reader to specific references on that subject for obtaining an accurate comparative picture. Due to the strength of the Earth’s intrinsic dipole field, a relatively large volume is carved out in interplanetary space around the planet and its atmosphere. This “magnetosphere” is regarded as a shield from external effects, but in actuality much energy and momentum are channeled into it, especially at high latitudes, where the frequent interconnection between the Earth’s magnetic field and the interplanetary field allows some access by solar wind particles and electric fields to the upper atmosphere and ionosphere. Moreover, reconnection between oppositely directed magnetic fields occurs in Earth’s extended magnetotail—producing a host of other phenomena including injection of a ring current of energized internal plasma from the magnetotail into the inner magnetosphere—creating magnetic storms and enhancements in auroral activity and related ionospheric outflows. There are also permanent, though variable, trapped radiation belts that strengthen and decay with the rest of magnetospheric activity—depositing additional energy into the upper atmosphere over a wider latitude range. Virtually every aspect of the Earth’s solar wind interaction, highly tied to its strong intrinsic dipole field, has its own dedicated textbook chapters and review papers. Although Mercury, Venus, Earth, and Mars belong to the same class of rocky terrestrial planets, their interaction with solar wind is very different. Earth and Mercury have the intrinsic, mainly dipole magnetic field, which protects them from direct exposure by solar wind. In contrast, Venus and Mars have no such shield and solar wind directly impacts their atmospheres/ionospheres. In the first case, intrinsic magnetospheric cavities with a long tail are found. In the second case, magnetospheres are also formed but are generated by the electric currents induced in the conductive ionospheres. The interaction of solar wind with terrestrial planets also varies due to changes caused by different distances to the Sun and large variations in solar irradiance and solar wind parameters. Other important planetary differences like local strong crustal magnetization on Mars and almost total absence of the ionosphere on Mercury create new essential features to the interaction pattern. Solar wind might be also a feasible driver for planetary atmospheric losses of volatiles, which could historically affect the habitability of the terrestrial planets.