The great rise and diversification of the use of outer space raises the question of the limitations to space activities. The ultimate restriction posed by space law is the use of outer space “for peaceful purposes.” Regardless of the semantic approach one adopts with respect to the definition of the term “peaceful purposes” in the text of the Outer Space Treaty, it is the underlying substantive legal normativity which constitutes the determining factor. The applicable international legal rules confirm that the ultimate limit is the prohibition of the use of force laid down in Article 2 (4) of the UN Charter, which applies to outer space along with the exceptions stipulated in the UN Charter and general international law. In addition, the Outer Space Treaty establishes a particular legal regime on celestial bodies, declaring them a demilitarized zone, and bans the stationing of weapons of mass destruction in outer space. Space law, as any other branch of public international law, is of evolutive nature, so future adjustments and developments of its legal normativity in light of the abrupt growth and multiplication of the exploration and uses in the space arena remain open.
141-146 of 146 Results
Article
Use of Outer Space for Peaceful Purposes
Martina Smuclerova
Article
Venus in Mesoamerica: Rain, Maize, Warfare, and Sacrifice
Ivan Šprajc
During the last three millennia before the Spanish Conquest, the peoples living in the central and southern parts of modern Mexico and the northern part of Central America evolved into complex societies with a number of common characteristics that define the cultural area known as Mesoamerica and are expressed in technology, forms of subsistence, government, architecture, religion, and intellectual achievements, including sophisticated astronomical concepts. For the Aztecs, the Maya, and many other Mesoamerican societies, Venus was one of the most important celestial bodies. Not only were they aware that the brightest “star” appearing in certain periods in the pre-dawn sky was identical to the one that at other times was visible in the evening after sunset; they also acquired quite accurate knowledge about the regularities of the planet’s apparent motion. While Venus was assiduously observed and studied, it also inspired various beliefs, in which its morning and evening manifestations had different attributes. Relevant information is provided by archaeological data, prehispanic manuscripts, early Spanish reports, and ethnographically recorded myths that survive among modern communities as remnants of pre-Conquest tradition.
The best-known is the malevolent aspect of the morning star, whose first appearances after inferior conjunction were believed to inflict harm on nature and humanity in a number of ways. However, the results of recent studies suggest that the prevalent significance of the morning star was of relatively late and foreign origin. The most important aspect of the symbolism of Venus was its conceptual association with rain and maize, in which the evening star had a prominent role. It has also been shown that these beliefs must have been motivated by some observational facts, particularly by the seasonality of evening star extremes, which approximately delimit the rainy season and the agricultural cycle in Mesoamerica. As revealed by different kinds of evidence, including architectural alignments to these phenomena, Venus was one of the celestial agents responsible for the timely arrival of rains, which conditioned a successful agricultural season. The planet also had an important place in the concepts concerning warfare and sacrifice, but this symbolism seems to have been derived from other ideas that characterize Mesoamerican religion. Human sacrifices were believed necessary for securing rain, agricultural fertility, and a proper functioning of the universe in general. Since the captives obtained in battles were the most common sacrificial victims, the military campaigns were religiously sanctioned, and the Venus-rain-maize associations became involved in sacrificial symbolism and warfare ritual. These ideas became a significant component of political ideology, fostered by rulers who exploited them to satisfy their personal ambitions and secular goals. In sum, the whole conceptual complex surrounding the planet Venus in Mesoamerica can be understood in the light of both observational facts and the specific socio-political context.
Article
Vesta and Ceres
Kevin Righter
Asteroids 1 Ceres and 4 Vesta are the two most massive asteroids in the asteroid belt, with mean diameters of 946 km and 525 km, respectively. Ceres was reclassified as a dwarf planet by the International Astronomical Union as a result of its new dwarf planet definition which is a body that (a) orbits the sun, (b) has enough mass to assume a nearly round shape, (c) has not cleared the neighborhood around its orbit, and (d) is not a moon. Scientists’ understanding of these two bodies has been revolutionized in the past decade by the success of the Dawn mission that visited both bodies. Vesta is an example of a small body that has been heated substantially and differentiated into a metallic core, silicate mantle, and basaltic crust. Ceres is a volatile-rich rocky body that experienced less heating than Vesta and has differentiated into rock and ice. These two contrasting bodies have been instrumental in learning how inner solar system material formed and evolved.
Article
Volcanism on Mercury
David A. Rothery
The history of volcanism on Mercury is almost the entire history of the formation of its crust. There are no recognized tracts of intact primary crust analogous to the Moon’s highland crust, probably because the density of Mercury’s iron-poor magma ocean was insufficient to enable crystalized silicate phases to float. Mercury’s surface consists of multiple generations of lavas. These were emplaced, rather like terrestrial “large igneous provinces” or LIPs, in their greatest volumes prior to about 3.5 Ga. Subsequently, erupted volumes decreased, and sites of effusive eruption became largely confined to crater floors. Plains lava surfaces younger than about 3.7 Ga have become scarred by sufficiently few impact craters that they are mapped as “smooth plains.” The older equivalents, which experienced the inner solar system’s “late heavy bombardment,” are mapped as intercrater plains. There is no consensus over whether plains with superimposed-crater characteristics that are intermediate between the smooth plains and intercrater plains end members can be consistently mapped as “intermediate plains.” However, any subdivision of the volcanic plains for mapping purposes arbitrarily splits apart a continuum.
The volcanic nature of Mercury’s smooth plains was ambiguous on the basis of the imagery returned by the first mission to Mercury, Mariner 10, which made three fly-bys in 1974–1975. Better and more complete imaging by MESSENGER (in orbit 2011–2015) removed any doubt by documenting innumerable ghost craters and wrinkle ridges. No source vents for the plains are apparent, but this is normal in LIPs where effusion rate and style characteristically flood the vent beneath its own products. However, there are good examples of broad, flat-bottomed valleys containing streamlined islands suggesting passage of fast-flowing low viscosity lava.
Although the causes of the mantle partial melting events supplying surface eruptions on Mercury are unclear, secular cooling of a small, one-plate planet such as Mercury would be expected to lead to the sort of temporal decrease in volcanic activity that is observed. Factors include loss of primordial heat and declining rate of radiogenic heat production (both of which would make mantle partial melting progressively harder), and thermal contraction of the planet (closing off ascent pathways).
Lava compositions, so far as can be judged from the limited X-ray spectroscopic and other geochemical measurements, appear to be akin to terrestrial komatiites but with very low iron content. Variations within this general theme may reflect heterogeneities in the mantle, or different degrees of partial melting.
The cessation of flood volcanism on Mercury is hard to date, because the sizes of the youngest flows, most of which are inside <200-km craters, are too small for reliable statistics to be derived from the density of superposed craters. However, it probably continued until approximately 1 Ga ago.
That was not the end of volcanism. MESSENGER images have enabled the identification of over a hundred “pits,” which are noncircular holes up to tens of km in size and up to about 4 km deep. Many pits are surrounded by spectrally red deposits, with faint outer edges tens of km from the pit, interpreted as ejecta from explosive eruptions within the pit. Many pits have complex floors, suggesting vent migration over time. Pits usually occur within impact craters, and it has been suggested that crustal fractures below these craters facilitated the ascent of magma despite the compressive regime imposed by the secular thermal contraction. These explosive eruptions must have been driven by the violent expansion of a gas. This could be either a magmatic volatile expanding near the top of a magma conduit, or result from heating of a near-surface volatile by rising magma. MESSENGER showed that Mercury’s crust is surprisingly rich in volatiles (S, Cl, Na, K, C), of which the one likely to be of most importance in driving the explosive eruptions is S.
We do not know when explosive volcanism began on Mercury. Cross-cutting relationships suggest that some explosion pits are considerably less than 1 Ga old, though most could easily be more than 3 Ga. They characteristically occur on top of smooth plains (or less extensive smooth fill of impact craters), and while some pits have no discernible “red spot” around them (perhaps because over time, it has faded into the background), there is no known example of part of a red spot peeping out from beneath the edge of a smooth plains unit. There seems to have been a change in eruptive style over time, with (small volume) explosions supplanting (large volume) effusive events.
Article
Water Ice at Mid-Latitudes on Mars
Frances E. G. Butcher
Mars’s mid-latitudes, corresponding approximately to the 30°–60° latitude bands in both hemispheres, host abundant water ice in the subsurface. Ice is unstable with respect to sublimation at Mars’s surface beyond the polar regions, but can be preserved in the subsurface at mid-to-high latitudes beneath a centimeters-to-meters-thick covering of lithic material. In Mars’s mid-latitudes, water ice is present as pore ice between grains of the martian soil (termed “regolith”) and as deposits of excess ice exceeding the pore volume of the regolith. Excess ice is present as lenses within the regolith, as extensive layers tens to hundreds of meters thick, and as debris-covered glaciers with evidence of past flow. Subsurface water ice on Mars has been inferred indirectly using numerous techniques including numerical modeling, observations of surface geomorphology, and thermal, spectral, and ground-penetrating radar analyses. Ice exposures have also been imaged directly by orbital and landed missions to Mars. Shallow pore ice can be explained by the diffusion and freezing of atmospheric water vapor into the regolith. The majority of known excess ice deposits in Mars’s mid-latitudes are, however, better explained by deposition from the atmosphere (e.g., via snowfall) under climatic conditions different from the present day. They are thought to have been emplaced within the last few million to 1 billion years, during large-scale mobilization of Mars’s water inventory between the poles, equator, and mid-latitude regions under cyclical climate changes. Thus, water ice deposits in Mars’s mid-latitudes probably host a rich record of geologically recent climate changes on Mars. Mid-latitude ice deposits are leading candidate targets for in situ resource utilization of water ice by future human missions to Mars, which may be able to sample the deposits to access such climate records. In situ water resources will be required for rocket fuel production, surface operations, and life support systems. Thus, it is essential that the nature and distribution of mid-latitude ice deposits on Mars are characterized in detail.
Article
Water Ice Permafrost on Mars and on the Moon
Maxim Litvak and Anton Sanin
The Moon and Mars are the most explored planetary bodies in the solar system. For the more than 60 years of the space era, dozens of science robotic missions have explored the Moon and Mars. The primary scientific goal for many of these missions was declared to be a search for surface or ground water/water ice and gaining an understanding of its distribution and origin.
Today, for the Moon, the focus of scientific exploration has moved to the lunar polar regions and permanently shadowed regions (PSRs). PSRs do not receive any direct sunlight and are frozen at very low temperatures (< 120 K), acting as cold traps. They are considered to be a storehouse that preserves records of the solar system’s evolution by trapping water ice and potentially other volatile deposits brought by comets and asteroids over billions of years.
For Mars, the water/water ice search was part of an attempt to find traces of ancient extraterrestrial life and possibly to understand how life appeared on Earth. Current Mars is cold and dry, but its high latitudes and some equatorial regions are enriched with surface and subsurface water ice. Scientists argue that oceans could have existed on ancient Mars if it was warm and wet and that different life forms could have originated similar to Earth’s. If this is the case, then biomarkers could be preserved in the Martian ground ice depositions.
Another popular idea that ties water ice permafrost on the Moon and Mars is related to the expected future human expansion to deep space. The Moon and Mars are widely considered to be the first destinations for future manned space-colony missions or even space-colony missions. In this scenario, the long-term presence and survival of astronauts on the lunar or Martian surface strongly depend on in situ resource utilization (ISRU). Water ice is at the top of the ISRU list because it could be used as water for astronauts’ needs. Its constituents, oxygen and hydrogen, could be used for breathing and for rocket fuel production, respectively.
The Moon is the closest body to Earth and discussion about presence of water ice on the Moon has both scientific and practical interest, especially for planning manned space missions. The focus further in space is on how subsurface water ice is distributed on Mars. A related topic is the debates about whether ancient Mars was wet and warm or if, for most of its history, the Martian surface was covered with glaciers. Finally, there are fundamental questions that should be answered by upcoming Mars and Moon missions.