Uranus provides a unique laboratory to test current understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere punctuated by storms, waves, and dark vortices, evolving slowly under the seasonal influence of Uranus’s extreme axial tilt. Condensables like methane and hydrogen sulphide play a crucial role in shaping circulation, clouds, and storm phenomena via latent heat release through condensation, strong equator-to-pole gradients suggestive of equatorial upwelling and polar subsidence, and the formation of stabilizing layers that may decouple different circulation and convective regimes as a function of depth. Phase transitions in the watery depths may also decouple Uranus’s atmosphere from motions within the interior. Weak vertical mixing and low atmospheric temperatures associated with Uranus’s negligible internal heat means that stratospheric methane photochemistry occurs in a unique high-pressure regime, decoupled from the influx of external oxygen. The low homopause also allows for the formation of an extensive ionosphere. Finally, the atmosphere provides a window on the bulk composition of Uranus—the ice-to-rock ratio, supersolar elemental and isotopic enrichments inferred from remote sensing, and future in situ measurements—providing key insights into its formation and subsequent migration.
As a cold, hydrogen-dominated, intermediate-sized, slowly rotating, and chemically enriched world, Uranus could be the closest and best example of atmospheric processes on a class of worlds that may dominate the census of planets beyond our own solar system. Future missions to the Uranian system must carry a suite of instrumentation capable of advancing knowledge of the time-variable circulation, composition, meteorology, chemistry, and clouds on this enigmatic “ice giant.”