Since the early 1990s, in analytical reviews, experts have increasingly been paying attention to the growing scarcity of rare and rare earth metals (REM) necessary for the development of advanced technologies in modern industry. The volume of the world market has increased over the past 50 years from 5,000 to 125,000 tons per year, which is explained by the extensive use of REM in the rapidly developing areas of industry associated with the advancement of high technology. Unique properties of REM are primarily used in the aerospace and other industrial sectors of the economy, and therefore are strategic materials. For example, platinum is an indispensable element that is used as a catalyst for chemical reactions. No battery can do without platinum. If all the millions of vehicles traveling along our roads installed hybrid batteries, all platinum reserves on Earth would end in the next 15 years! Consumers are interested in six elements known as the platinum group of metals (PGM): iridium (Ir), osmium (Os), palladium (palladium, Pd), rhodium (rhodium, Rh), ruthenium (ruthenium, Ru), and platinum itself. These elements, rare on the Earth, possess unique chemical and physical properties, which makes them vital industrial materials. To solve this problem, projects were proposed for the utilization of the substance of asteroids approaching the Earth. According to modern estimates, the number of known asteroids approaching the Earth reaches more than 9,000. Despite the difficulties of seizing, transporting, and further developing such an object in space, this way of solving the problem seemed technologically feasible and cost-effectively justified. A 10 m iron-nickel asteroid could contain up to 75 tons of rare metals and REM, primarily PGM, equivalent to a commercial price of about $2.8 billion in 2016 prices.
However, the utilization of an asteroid substance entering the lunar surface can be technologically simpler and economically more cost-effective. Until now, it was believed that the lunar impact craters do not contain the rocks of the asteroids that formed them, since at high velocities the impactors evaporate during a collision with the lunar surface. According to the latest research, it turned out that at a fall rate of less than 12 km/s falling body (drummer) can partially survive in a mechanically fractured state. Consequently, the number of possible resources present on the lunar surface can be attributed to nickel, cobalt, platinum, and rare metals of asteroid origin. The calculations show that the total mass, for example, of platinum and platinoids on the lunar surface as a result of the fall of asteroids may amount more than 14 million tons. It should be noted that the world’s known reserves of platinum group metals on the Earth are about 80,000 tons.
Article
Extraterrestrial Resources
V.V. Shevchenko
Article
Impact Crater Densities as a Tool for Dating Planetary Surfaces
William K. Hartmann
The use of impact crater densities to estimate the ages of planetary surfaces began in the 1960s. Some predictive successes have been confirmed with radiometric dating of sites on the Moon and Mars. The method is highly dependent on our understanding of the rate of crater formation on different worlds, and, more importantly, on the history of that rate, starting with intense cratering during planetary formation 4.5 Ga ago. The system is thus calibrated by obtaining radiometric dates from samples of relatively homogeneous geologic units on various worlds.
Crater chronometry is still in its infancy. Future sample-returns and in situ measurements, obtained by missions from collaborating nations to various worlds, will provide ever-increasing improvements in the system in coming decades. Such data can lead to at least two-significant-figure measurements, not only of the ages of broad geologic provinces on solar system worlds, but of the characteristic survival times of various-sized smaller craters. Such data, in turn, clarify the rates of turnover of surface materials and the production rates of gravel-like regolith and megaregolith in the surface layers. Better measurements of the impact rate at various times, in turn, support better modeling of the accretion and fragmentation processes among early planetesimals as well as contemporary asteroids, in various parts of the solar system. Once the crater chronometry system is calibrated for various planetary bodies, important chronological information about those various planetary bodies can be obtained by orbital missions, without the need for expensive sample-return or lander missions on each individual surface.
Article
Isotopic Dating
Yuri Amelin
Isotopic dating is the measurement of time using the decay of radioactive isotopes and accumulation of decay products at a known rate. With isotopic chronometers, we determine the time of the processes that fractionate parent and daughter elements. Modern isotopic dating can resolve time intervals of ~1 million years over the entire lifespan of the Earth and the Solar System, and has even higher time resolution for the earliest and the most recent geological history. Using isotopic dates, we can build a unified scale of time for the evolution of Earth, the Moon, Mars, and asteroids, and expand it as samples from other planets become available for study. Modern geochronology and cosmochronology rely on isotopic dating methods that are based on decay of very long-lived radionuclides: 238U, 235U, 40K, 87Rb, 147Sm, etc. to stable radiogenic nuclides 206Pb, 207Pb, 40K, 40Ca, 87Sr, 143Nd, and moderately long-lived radionuclides: 26Al, 53Mn, 146Sm, 182Hf, to stable nuclides 26Mg, 53Cr, 142Nd, 182W. The diversity of physical and chemical properties of parent (radioactive) and daughter (radiogenic) nuclides, their geochemical and cosmochemical affinities, and the resulting diversity of processes that fractionate parent and daughter elements, allows direct isotopic dating of a vast range of earth and planetary processes. These processes include, but are not limited to evaporation and condensation, precipitation and dissolution, magmatism, metamorphism, metasomatism, sedimentation and diagenesis, ore formation, formation of planetary cores, crystallisation of magma oceans, and the timing of major impact events. Processes that cannot be dated directly, such as planetary accretion, can be bracketed between two datable events.
Article
Lunar Exploration Missions and Environmental Discovery: Status and Progress
Kyeong J. Kim
Exploration of the Moon is currently one of the most important and interesting subjects. The Moon is considered not only a place to explore but also a place to live in preparation to explore planets beyond it. This opportunity has arisen due to a series of discoveries associated with water on the Moon during the past half century. Lunar exploration of the moon began with the flyby mission by the United States in 1959. Since then, scientific investigations of the Moon have increased understanding of the lunar geology and surface environment. Based on more than 70 lunar missions to date, a major goal is to explore how humans can live on the Moon for a long period of time to examine sustainability on the Moon. Consequently, the area of lunar science and technology is being employed to discover how in situ resources can be utilized for humans to live on the Moon and, eventually, Mars and beyond.
Article
Planetary Spectroscopy
Alian Wang
Planetary spectroscopy uses physical methods to study the chemical properties of the geological materials on the planetary bodies in our solar system. This article will present twelve types of spectroscopy frequently used in planetary explorations. Their energy (or wavelength) varies from γ-ray (keV) to far-infrared (μm), which involves the transitions of nuclei, atoms, ions, and molecules in planetary materials. The article will cover the basic concept of the transition for each of the twelve types of spectroscopy, along with their legendary science discoveries made during the past planetary exploration missions by the international planetary science and engineering community.
The broad application of spectroscopy in planetary exploration is built upon the fact that only limited extraterrestrial materials were collected (meteorites, cosmic dust, and the returned samples by missions) that enabled the detailed investigations of their properties in laboratories, while spectroscopic measurements can be made on the objects of our solar system remotely and robotically, such as during the flyby, orbiting, lander, and rover missions. In this sense, the knowledge obtained by planetary spectroscopy has contributed to a major portion of planetary sciences.
In the coming era of space explorations, more powerful spacecraft will be sent out by mankind, go to deep space, and explore exotic places. Generations of new planetary science payloads, including planetary spectrometers, will be created and will fly. New sciences will be revealed.
Article
Terrestrial Analogs to Planetary Volcanic Phenomena
Peter J. Mouginis-Mark and Lionel Wilson
More than 50 years of solar system exploration have revealed the great diversity of volcanic landscapes beyond Earth, be they formed by molten rock, liquid water, or other volatile species. Classic examples of giant shield volcanoes, solidified lava flows, extensive ash deposits, and volcanic vents can all be identified, but except for eruptions seen on the Jovian moon Io, no planetary volcanoes have been observed in eruption. Consequently, the details of the processes that created these landscapes must be inferred from the available spacecraft data. Despite the increasing improvement in the spatial, temporal, compositional, and topographic characteristics of the data for planetary volcanoes, details of the way they formed are not clear. However, terrestrial eruptions can provide numerous insights into planetary eruptions, whether they are effusive eruptions resulting in the emplacement of lava flows or explosive eruptions due to either volatiles in the magma or the interaction between hot lava and water or ice. In recent decades, growing attention has been placed on the use of terrestrial analogs to help interpret volcanic landforms and processes on the rocky planets (Mercury, Venus, the Moon, and Mars) and in the outer solar system (the moons of Jupiter and Saturn, and the larger asteroids). In addition, terrestrial analogs not only provide insights into the geologic processes associated with volcanism but also can serve as test sites for the development of instrumentation to be sent to other worlds, as well as provide a training ground for crewed and uncrewed missions seeking to better understand volcanism throughout the solar system.