Early models of the composition of the Earth relied heavily on meteorites. In all these models Earth had different layers, each layer corresponded to a different type of meteorite or meteorite component. Later, more realistic models based on analyses of samples from Earth began with Ringwood’s pyrolite composition in the 1960s. Further improvement came with the analyses of rare MgO rich peridotites from a variety of occurrences all over the Earth, as xenoliths enclosed in melts from the upper mantle or as ultramafic massifs, tectonically emplaced on the Earth’s surface. Chemical systematics of these rocks allow the determination of the major element composition of the primitive upper mantle (PUM), the upper mantle after core formation and before extraction of basalts ultimately leading to the formation of the crust. Trace element analyses of upper mantle rocks confirmed their primitive nature. Geochemical and geophysical evidence argue for a bulk Earth mantle of uniform composition, identical to the PUM, also designated as “bulk silicate Earth” (BSE). The formation of a metal core was accompanied by the removal of siderophile and chalcophile elements into the core. Detailed modeling suggests that core formation was an ongoing process parallel to the accretion of Earth. The composition of the core is model dependent and thus uncertain and makes reliable estimates for siderophile and chalcophile element concentrations of bulk Earth difficult.
Improved stable isotope analyses show isotopic similarities with noncarbonaceous chondrites (NCC), while the chemical composition of the mantle of the Earth indicates similarities with carbonaceous chondrites (CC). In detail, however, it can be shown that no single known meteorite group, nor any mixture of meteorite groups can match the chemical and isotopic composition of Earth. This conclusion is extremely important for any formation model of the Earth.
Article
Composition of Earth
H. Palme
Article
Element Partitioning (Mineral-Melt, Metal-/Sulfide-Silicate) in Planetary Sciences
Brandon Mahan
Element partitioning—at its most basic—is the distribution of an element of interest between two constituent phases as a function of some process. Major constituent elements generally affect the thermodynamic environment (chemical equilibrium) and therefore trace element partitioning is often considered, as trace elements are present in minute quantities and their equilibrium exchange reactions do not impart significant changes to the larger system. Trace elements are responsive to thermodynamic conditions, and thus they act as passive tracers of chemical reactions without appreciably influencing the bulk reactions themselves. In planetary sciences, the phase pairs typically considered are mineral-melt, metal-silicate, and sulfide-silicate, owing largely to the ubiquity of their coexistence in planetary materials across scales and context, from the micrometer-sized components of meteorites up to the size of planets (thousands of kilometers).
It is common to speak of trace elements in terms of their tendency toward forming metallic, sulfidic, or oxide phases, and the terms “siderophile,” “chalcophile,” and “lithophile” (respectively) are used to define these tendencies under what is known as the Goldschmidt Classification scheme. The metric of an element’s tendency to concentrate into one phase relative to another is expressed as the ratio of its concentration (as a weight or molar fraction) in one phase over another, where convention dictates the reference frame as solid over liquid, and metal or sulfide over silicate; this mathematical term is the element’s partition coefficient, or distribution coefficient, between the two respective phases,
D
M
Phase
B
Phase
A
(where
M
is the element of interest, most often reported as molar fraction), or simply
D
M
. In general, trace elements obey Henry’s Law, where the element’s activity and concentration are linearly proportional. Practically speaking, this means that the element is sufficiently dilute in the system such that its atoms interact negligibly with one another compared to their interactions with major element phases, and thus the trace element’s partition coefficient in most settings is not appreciably affected by its concentration.
The radius and charge of an element’s ionized species (its ionic radius and valence state)—in relation to either the major element ion for which it is substituting or the lattice site vacancy or interstitial space it is filling—generally determine the likelihood of trace element substitution or vacancy/interstitial fill (along with the net charge of the lattice space). The key energy consideration that underlies an element’s partitioning is the Gibbs free energy of reaction between the phases involved. Gibbs free energy is the change in internal energy associated with a chemical reaction (at a given temperature and pressure) that can be used to do work, and is denoted as
Δ
G
rxn
. Reactions with negative
Δ
G
rxn
values are spontaneous, and the magnitude of this negative value for a given phase, for example, a metal oxide, denotes the relative affinity of the metal toward forming oxides. That is to say, an element with a highly negative
Δ
G
rxn
for its oxide species at relevant pressure-temperature conditions will tend to be found in oxide and silicate minerals, that is, it will be lithophile (and vice versa for siderophile elements).
Trace element partitioning systematics in mineral-melt and metal-/sulfide-silicate systems have boundless applications in planetary science. A growing collective understanding of the partition coefficients of elements has been built on decades of physical chemistry, deterministic theory, petrology, experimental petrology, and natural observations. Leveraging this immense intellectual, technical, and methodological foundation, modern trace element partitioning research is particularly aimed at constraining the evolution of plate tectonics on Earth (conditions and timing of onset), understanding the formation history of planetary materials such as chondrite meteorites and their constituents (e.g., chondrules), and de-convolving the multiply operating processes at play during the accretion and differentiation of Earth and other terrestrial planets.
Article
Large Volcanic Channels of the Inner Solar System
David W. Leverington
Many large volcanic channel systems are recognized at the surfaces of rocky bodies of the inner solar system. The more than 200 channels known for the Moon mainly have simple sinuous forms with widths of up to several kilometers and lengths of up to hundreds of kilometers, typically commencing at topographic depressions and extending downslope until they fade into associated volcanic units. The Rima Hadley system was a key target of the Apollo 15 mission and was confirmed as a product of volcanic processes related to the emplacement of lavas in the Palus Putredinis region of Mare Imbrium. The more than 200 channels known for Venus are in many cases morphologically similar to sinuous lunar rilles, but some systems are especially large and complex, with widths of up to tens of kilometers and lengths that can exceed 1,000 km. Such systems typically commence at structural features or in regions of disturbed terrain and possess anastomosing reaches associated with prominent streamlined uplands. In contrast, Venusian canali typically maintain sinuous forms with widths of only a few kilometers but remarkably can be characterized by lengths of thousands of kilometers. Some Venusian channels were involved in the emplacement of fluidized ejecta in the vicinities of impact craters whereas others may have formed in such environments as a result of later volcanic events. The 10 large volcanic channels that are recognized on Mercury have lengths no greater than ~161 km but can have widths of up to several tens of kilometers. These systems developed as conduits for voluminous lavas that extend across adjacent impact basins. Terrestrial komatiitic channels of Archean and Proterozoic ages can have sizes that are comparable to those of lunar rilles, and the formation of these systems is likely to have played an important role in the development of associated Ni-Cu-(PGE) ores. The outflow channels of Mars have widths of up to tens of kilometers and lengths of up to thousands of kilometers and are widely interpreted as aqueous systems formed by catastrophic discharges from aquifers, but the properties and geological associations of these features and numerous other large Martian channel systems are arguably well aligned with those expected of volcanic origins. Overall, large volcanic channels of the inner solar system are mainly ancient products of the emplacement of low-viscosity lava flows of mafic or ultramafic composition, involving eruptions that were characterized by extraordinarily high effusion rates and total lava volumes that in some cases are likely to have been as great as those that characterized some Large Igneous Provinces on Earth. The deeply rooted igneous plumbing systems most favorable to the development of large volcanic channels would have been especially common in the earlier history of the solar system, when the interior temperatures of rocky bodies were greater than today. The early development of large volcanic channel systems is likely typical of the geological histories of large rocky bodies in the universe.
Article
Mantle Convection in Terrestrial Planets
Elvira Mulyukova and David Bercovici
All the rocky planets in our solar system, including the Earth, initially formed much hotter than their surroundings and have since been cooling to space for billions of years. The resulting heat released from planetary interiors powers convective flow in the mantle. The mantle is often the most voluminous and/or stiffest part of a planet and therefore acts as the bottleneck for heat transport, thus dictating the rate at which a planet cools. Mantle flow drives geological activity that modifies planetary surfaces through processes such as volcanism, orogenesis, and rifting. On Earth, the major convective currents in the mantle are identified as hot upwellings such as mantle plumes, cold sinking slabs, and the motion of tectonic plates at the surface. On other terrestrial planets in our solar system, mantle flow is mostly concealed beneath a rocky surface that remains stagnant for relatively long periods. Even though such planetary surfaces do not participate in convective circulation, they deform in response to the underlying mantle currents, forming geological features such as coronae, volcanic lava flows, and wrinkle ridges. Moreover, the exchange of material between the interior and surface, for example through melting and volcanism, is a consequence of mantle circulation and continuously modifies the composition of the mantle and the overlying crust. Mantle convection governs the geological activity and the thermal and chemical evolution of terrestrial planets and understanding the physical processes of convection helps us reconstruct histories of planets over billions of years after their formation.
Article
Science and Exploration of the Moon: Overview
Bradley L. Jolliff
Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international.
The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses.
The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon.
The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.
Article
Tectonism of Mercury
Paul K. Byrne
Mercury, like its inner Solar System planetary neighbors Venus, Mars, and the Moon, shows no evidence of having ever undergone plate tectonics. Nonetheless, the innermost planet boasts a long record of tectonic deformation. The most prominent manifestation of this history is a population of large scarps that occurs throughout the planet’s cratered terrains; some of these scarps rise kilometers above the surrounding landscape. Mercury’s smooth plains, the majority of which are volcanic and occupy over a quarter of the planet, abound with low-relief ridges. The scarps and ridges are underlain by thrust faults and point to a tectonic history dominated by crustal shortening. At least some of the shortening strain recorded by the ridges may reflect subsidence of the lavas in which they formed, but the widespread distribution of scarps attests to a planetwide process of global contraction, wherein Mercury experienced a reduction in volume as its interior cooled through time.
The onset of this phenomenon placed the lithosphere into a net state of horizontal compression, and accounts for why Mercury hosts only a few instances of extensional structures. These landforms, shallow troughs that form complex networks, occur almost wholly in volcanically flooded impact craters and basins and developed as those lavas cooled and thermally contracted. Tellingly, widespread volcanism on Mercury ended at around the same time the population of scarps began to form. Explosive volcanism endured beyond this point, but almost exclusively at sites of lithospheric weakness, where large faults penetrate deep into the interior. These observations are consistent with decades-old predictions that global contraction would shut off major volcanic activity, and illustrate how closely Mercury’s tectonic and volcanic histories are intertwined.
The tectonic character of Mercury is thus one of sustained crustal shortening with only localized extension, which started almost four billion years ago and extends into the geologically recent past. This character somewhat resembles that of the Moon, but differs substantially from those of Earth, Venus, or Mars. Mercury may represent how small rocky planets tectonically evolve and could provide a basis for understanding the geological properties of similarly small worlds in orbit around other stars.
Article
Terrestrial Planets: Interior Structure, Dynamics, and Evolution
Doris Breuer and Tilman Spohn
The three terrestrial planets Mercury, Venus, and Mars (ordered by their distance from the sun) share the same first-order internal structure with the Earth. There is an iron-rich core at the center, overlain by a silicate mantle and a crust that is generated by partial melting of the mantle. But while Mars and Venus have a core with a radius of about half the planetary radius, just as the Earth, the core of Mercury extends to about 80% of the planet’s radius. The interiors of the terrestrial planets are heated by the decay of radioactive elements and cool by removing internal energy. In addition to radiogenic heat, internal energy was deposited during planet formation and early differentiation. Heat transport is dominated by mantle and core convection and volcanic heat transfer although conduction through the lithosphere on top of the mantle matters. The convection powers the planetary heat engine which converts thermal energy into gravitational energy, mechanical (tectonic) work, and magnetic field energy. None of the terrestrial planets has plate tectonics such as the Earth although surface renewal and some form of lithosphere subduction is debated for Venus. The tectonics of Mars and Mercury is best described as stagnant-lid tectonics, with a thick rigid lid overlying the convecting mantle. Both planets show early volcanism, with Mars in particular being locally volcanically active even until a few million years ago. Because of Mercury’s large core, the mantle is comparatively thin, and convection may be sluggish or may even have ceased. Magnetism is another property that the terrestrial planets share with the Earth although it is still not confirmed by data that Venus ever had a magnetic field. A dynamo process driven by buoyancy released through the growth of a solid inner core is producing the present-day magnetic fields of Earth and Mercury, but Mars’ dynamo has likely ceased to be active. Crust units with remanent magnetization testify to the early dynamo. The terrestrial planets have been explored to differing degrees by spacecraft missions which allow a deeper physical understanding of the interiors and their dynamics and evolution.