Cosmogenic nuclides are produced by the interaction of energetic elementary particles of galactic cosmic radiation (GCR) and their secondaries with atomic nuclei in extraterrestrial or terrestrial material. In extraterrestrial samples cosmogenic nuclides produced by energetic particles emitted by the Sun (SCR) are also detectable. Cosmogenic nuclides usually are observable only for noble gas isotopes, whose natural abundances in the targets of interest are exceedingly low, with some radioactive isotopes having half-lives mostly in the million-year range, and a few stable nuclides of elements such as Gd and Sm whose abundance is appreciably modified by reactions with low-energy secondary cosmic-ray neutrons. In solid matter, the mean attenuation length of GCR protons is on the order of 50 cm. Therefore, cosmogenic nuclides are a major tool to study the history of small objects in space and of matter near the surfaces of larger parent bodies. A classical application is to measure “exposure ages” of meteorites, that is, the time they spent as a small body in interplanetary space. In some cases, the previous history of the future meteorite in its parent-body regolith can also be constrained. Such information helps to understand delivery mechanisms of meteorites from their parent asteroids (mainly from the main belt) or parent planets, and to constrain the number of ejection events responsible for the meteorites in collections worldwide. Cosmogenic nuclides in lunar samples from known depths of up to ~2 m serve to study the deposition and mixing history of the lunar regolith over hundreds of million years, as well as to calibrate nuclide production models. Present and future sample return missions rely on cosmogenic nuclide measurements as important tools to constrain the sample’s exposure history or loss rates of its parent-body surfaces to space. First measurements of cosmogenic noble gas isotopes on the surface of Mars demonstrate that the exposure and erosional history of planetary bodies can be obtained by in situ analyses. Exposure ages of presolar grains in meteorites provide at present the only quantitative constraint of their presolar history. In some cases, irradiation effects of energetic particles from the early Sun can be detected in early solar system condensates, confirming that the early Sun was likely much more active than later in its history, as expected from observations of young stars. The increasing precision of modern isotope analyses also reveals tiny isotopic anomalies induced by cosmic-ray effects in several elements of interest in cosmochemistry, which need to be recognized and corrected for.
Cosmogenic nuclide studies rely on the knowledge of their production rates, which depend on the elemental composition of a sample and its “shielding” during irradiation, that is, its position within an irradiated object, and for meteorites their pre-atmospheric size. The physics of cosmogenic nuclide production is basically well understood and has led to sophisticated production models. They are most successful if a sample’s shielding can be constrained by the analyses of several cosmogenic nuclides with different depth dependencies of their production rates.
Cosmogenic nuclides are also an important tool in Earth sciences, although this is not a topic of this article. The foremost example is 14C produced in the atmosphere and incorporated into organic material, which is used for dating. Cosmogenic radionucuclides and noble gases produced in situ in near-surface samples, mostly by secondary cosmic-ray neutrons, are an important tool in quantitative geomorphology and related fields.
Article
V.V. Shevchenko
Since the early 1990s, in analytical reviews, experts have increasingly been paying attention to the growing scarcity of rare and rare earth metals (REM) necessary for the development of advanced technologies in modern industry. The volume of the world market has increased over the past 50 years from 5,000 to 125,000 tons per year, which is explained by the extensive use of REM in the rapidly developing areas of industry associated with the advancement of high technology. Unique properties of REM are primarily used in the aerospace and other industrial sectors of the economy, and therefore are strategic materials. For example, platinum is an indispensable element that is used as a catalyst for chemical reactions. No battery can do without platinum. If all the millions of vehicles traveling along our roads installed hybrid batteries, all platinum reserves on Earth would end in the next 15 years! Consumers are interested in six elements known as the platinum group of metals (PGM): iridium (Ir), osmium (Os), palladium (palladium, Pd), rhodium (rhodium, Rh), ruthenium (ruthenium, Ru), and platinum itself. These elements, rare on the Earth, possess unique chemical and physical properties, which makes them vital industrial materials. To solve this problem, projects were proposed for the utilization of the substance of asteroids approaching the Earth. According to modern estimates, the number of known asteroids approaching the Earth reaches more than 9,000. Despite the difficulties of seizing, transporting, and further developing such an object in space, this way of solving the problem seemed technologically feasible and cost-effectively justified. A 10 m iron-nickel asteroid could contain up to 75 tons of rare metals and REM, primarily PGM, equivalent to a commercial price of about $2.8 billion in 2016 prices.
However, the utilization of an asteroid substance entering the lunar surface can be technologically simpler and economically more cost-effective. Until now, it was believed that the lunar impact craters do not contain the rocks of the asteroids that formed them, since at high velocities the impactors evaporate during a collision with the lunar surface. According to the latest research, it turned out that at a fall rate of less than 12 km/s falling body (drummer) can partially survive in a mechanically fractured state. Consequently, the number of possible resources present on the lunar surface can be attributed to nickel, cobalt, platinum, and rare metals of asteroid origin. The calculations show that the total mass, for example, of platinum and platinoids on the lunar surface as a result of the fall of asteroids may amount more than 14 million tons. It should be noted that the world’s known reserves of platinum group metals on the Earth are about 80,000 tons.
Article
Edward R. D. Scott
Iron meteorites are thought to be samples of metallic cores and pools that formed in diverse small planetary bodies. Their great diversity offers remarkable insights into the formation of asteroids and the early history of the solar system. The chemical compositions of iron meteorites generally match those predicted from experimental and theoretical considerations of melting in small bodies. These bodies, called planetesimals, were composed of mixtures of grains of silicates, metallic iron-nickel, and iron sulfide with compositions and proportions like those in chondrite meteorites. Melting in planetesimals caused dense metal to sink through silicate so that metallic cores formed.
A typical iron meteorite contains 5–10% nickel, ~0.5% cobalt, 0.1–0.5% phosphorus, 0.1–1% sulfur and over 20 other elements in trace amounts. A few percent of iron meteorites also contain silicate inclusions, which should have readily separated from molten metal because of their buoyancy. They provide important evidence for impacts between molten or partly molten planetesimals. The major heat source for melting planetesimals was the radioactive isotope 26Al, which has a half-life of 0.7 million years. However, a few iron meteorites probably formed by impact melting of chondritic material. Impact processes were also important in the creation of many iron meteorites when planetesimals were molten. Chemical analysis show that most iron meteorites can be divided into 14 groups: about 15% appear to come from another 50 or more poorly sampled parent bodies. Chemical variations within all but three groups are consistent with fractional crystallization of molten cores of planetesimals. The other three groups are richer in silicates and probably come from pools of molten metal in chondritic bodies.
Isotopic analysis provides formation ages for iron meteorites and clues to their provenance. Isotopic dating suggests that the parent bodies of iron meteorites formed before those of chondrites, and some irons appear to be the oldest known meteorites. Their unexpected antiquity is consistent with 26Al heating of planetesimals. Bodies that accreted more than ~2 million years after the oldest known solids (refractory inclusions in chondrites) should not have contained enough 26Al to melt. Isotopic analysis also shows that iron meteorites, like other meteorite types, display small anomalies due to pre-solar grains that were not homogenized in the solar nebula (or protoplanetary disk). Although iron meteorites are derived from asteroids, their isotopic anomalies provide the best clues that some come from planetesimals that did not form in the asteroid belt. Some may have formed beyond Jupiter; others show isotopic similarities to Earth and may have formed in the neighborhood of the terrestrial planets. Iron meteorites therefore contain important clues to the formation of planetesimals that melted and they also provide constraints on theories for the formation of planets and asteroids.
Article
The Rosetta spacecraft rendezvoused with comet 67P/Churyumov-Gerasimenko in 2014–2016 and observed its surface morphology and mass loss process. The large obliquity (52°) of the comet nucleus introduces many novel physical effects not known before. These include the ballistic transport of dust grains from the southern hemisphere to the northern hemisphere during the perihelion passage, thus shaping the dichotomy of two sides, with the northern hemisphere largely covered by dust layers from the recycled dusty materials (back fall) and the southern hemisphere consisting mostly of consolidated terrains. A significant amount of surface material up to 4–10 m in depth could be transferred across the nucleus surface in each orbit. New theories of the physical mechanisms driving the outgassing and dust ejection effects are being developed. There is a possible connection between the cometary dust grains and the fluffy aggregates and pebbles in the solar nebula in the framework of the streaming-instability scenario. The Rosetta mission thus succeeded in fulfilling one of its original scientific goals concerning the origin of comets and their relation to the formation of the solar system.
Article
Alan E. Rubin and Chi Ma
Meteorites are rocks from outer space that reach the Earth; more than 60,000 have been collected. They are derived mainly from asteroids; a few hundred each are from the Moon and Mars; some micrometeorites derive from comets. By mid 2020, about 470 minerals had been identified in meteorites. In addition to having characteristic petrologic and geochemical properties, each meteorite group has a distinctive set of pre-terrestrial minerals that reflect the myriad processes that the meteorites and their components experienced. These processes include condensation in gaseous envelopes around evolved stars, crystallization in chondrule melts, crystallization in metallic cores, parent-body aqueous alteration, and shock metamorphism. Chondrites are the most abundant meteorites; the major components within them include chondrules, refractory inclusions, opaque assemblages, and fine-grained silicate-rich matrix material. The least-metamorphosed chondrites preserve minerals inherited from the solar nebula such as olivine, enstatite, metallic Fe-Ni, and refractory phases. Other minerals in chondrites formed on their parent asteroids during thermal metamorphism (such as chromite, plagioclase and phosphate), aqueous alteration (such as magnetite and phyllosilicates) and shock metamorphism (such as ringwoodite and majorite). Differentiated meteorites contain minerals formed by crystallization from magmas; these phases include olivine, orthopyroxene, Ca-plagioclase, Ca-pyroxene, metallic Fe-Ni and sulfide. Meteorites also contain minerals formed during passage through the Earth’s atmosphere and via terrestrial weathering after reaching the surface. Whereas some minerals form only by a single process (e.g., by high-pressure shock metamorphism or terrestrial weathering of a primary phase), other meteoritic minerals can form by several different processes, including condensation, crystallization from melts, thermal metamorphism, and aqueous alteration.
Article
Bradley L. Jolliff
Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international.
The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses.
The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon.
The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.
Article
Katharina Lodders
Solar elemental abundances, or solar system elemental abundances, refer to the complement of chemical elements in the entire Solar System. The Sun contains more than 99% of the mass in the solar system and therefore the composition of the Sun is a good proxy for the composition of the overall solar system. The solar system composition can be taken as the overall composition of the molecular cloud within the interstellar medium from which the solar system formed 4.567 billion years ago. Active research areas in astronomy and cosmochemistry model collapse of a molecular cloud of solar composition into a star with a planetary system and the physical and chemical fractionation of the elements during planetary formation and differentiation. The solar system composition is the initial composition from which all solar system objects (the Sun, terrestrial planets, gas giant planets, planetary satellites and moons, asteroids, Kuiper-belt objects, and comets) were derived.
Other dwarf stars (with hydrostatic hydrogen-burning in their cores) like the Sun (type G2V dwarf star) within the solar neighborhood have compositions similar to the Sun and the solar system composition. In general, differential comparisons of stellar compositions provide insights about stellar evolution as functions of stellar mass and age and ongoing nucleosynthesis but also about galactic chemical evolution when elemental compositions of stellar populations across the Milky Way Galaxy is considered. Comparisons to solar composition can reveal element destruction (e.g., Li) in the Sun and in other dwarf stars. The comparisons also show element production of, for example, C, N, O, and the heavy elements made by the s-process in low to intermediate mass stars (3–7 solar masses) after these evolved from their dwarf-star stage into red giant stars (where hydrogen and helium burning can occur in shells around their cores). The solar system abundances are and have been a critical test composition for nucleosynthesis models and models of galactic chemical evolution, which aim ultimately to track the production of the elements heavier than hydrogen and helium in the generation of stars that came forth after the Big Bang 13.4 billion years ago.
Article
Alan E. Rubin
Two important scientific questions that confronted 18th- and 19th-century naturalists were whether continental glaciation had occurred thousands of years earlier and whether extraterrestrial rocks occasionally fell to Earth. Eventual recognition of these hypotheses as real phenomena resulted from initial reports by nonprofessionals, subsequent investigation by skeptical scientists, and vigorous debate. Evidence that kilometer-thick glaciers had once covered Northern Europe and Canada included (a) the resemblance of scratched and polished rocks near mountain glaciers to those located in unglaciated U-shaped valleys; (b) the similarity of poorly sorted rocks and debris within “drift deposits” (moraines) to the sediment load of glaciers; and (c) the discovery of freezing meltwater at the base of glaciers, hypothesized to facilitate their movement. Three main difficulties naturalists had with accepting the notion that rocks fell from the sky were that (a) meteorite falls are localized events, generally unwitnessed by professional scientists; (b) mixed in with reports of falling rocks were fabulous accounts of falling masses of blood, flesh, milk, gelatin, and other substances; and (c) the phenomenon of falling rocks could neither be predicted nor verified by experiment. Five advances leading to the acceptance of meteorites were (a) Ernst Chladni’s 1794 treatise linking meteors, fireballs, and falling rocks; (b) meteor observations conducted in 1798 showing the high altitudes and enormous velocities of their meteoroid progenitors; (c) a spate of several widely witnessed meteorite falls between 1794 and 1807 in Europe, India, and America; (d) chemical analyses of several meteorites by Edward Charles Howard in 1802, showing all contained nickel (which is rare in the Earth’s crust); and (e) the discoveries of four asteroids between 1801 and 1807, providing a plausible extraterrestrial source for meteorites.