1-4 of 4 Results  for:

  • Planetary Chemistry and Cosmochemistry x
  • History of Ideas about Planets and Planetary Systems x
Clear all


Astrobiology (Overview)  

Sean McMahon

Astrobiology seeks to understand the origin, evolution, distribution, and future of life in the universe and thus to integrate biology with planetary science, astronomy, cosmology, and the other physical sciences. The discipline emerged in the late 20th century, partly in response to the development of space exploration programs in the United States, Russia, and elsewhere. Many astrobiologists are now involved in the search for life on Mars, Europa, Enceladus, and beyond. However, research in astrobiology does not presume the existence of extraterrestrial life, for which there is no compelling evidence; indeed, it includes the study of life on Earth in its astronomical and cosmic context. Moreover, the absence of observed life from all other planetary bodies requires a scientific explanation, and suggests several hypotheses amenable to further observational, theoretical, and experimental investigation under the aegis of astrobiology. Despite the apparent uniqueness of Earth’s biosphere— the “n = 1 problem”—astrobiology is increasingly driven by large quantities of data. Such data have been provided by the robotic exploration of the Solar System, the first observations of extrasolar planets, laboratory experiments into prebiotic chemistry, spectroscopic measurements of organic molecules in extraterrestrial environments, analytical advances in the biogeochemistry and paleobiology of very ancient rocks, surveys of Earth’s microbial diversity and ecology, and experiments to delimit the capacity of organisms to survive and thrive in extreme conditions.


Composition of Earth  

H. Palme

Early models of the composition of the Earth relied heavily on meteorites. In all these models Earth had different layers, each layer corresponded to a different type of meteorite or meteorite component. Later, more realistic models based on analyses of samples from Earth began with Ringwood’s pyrolite composition in the 1960s. Further improvement came with the analyses of rare MgO rich peridotites from a variety of occurrences all over the Earth, as xenoliths enclosed in melts from the upper mantle or as ultramafic massifs, tectonically emplaced on the Earth’s surface. Chemical systematics of these rocks allow the determination of the major element composition of the primitive upper mantle (PUM), the upper mantle after core formation and before extraction of basalts ultimately leading to the formation of the crust. Trace element analyses of upper mantle rocks confirmed their primitive nature. Geochemical and geophysical evidence argue for a bulk Earth mantle of uniform composition, identical to the PUM, also designated as “bulk silicate Earth” (BSE). The formation of a metal core was accompanied by the removal of siderophile and chalcophile elements into the core. Detailed modeling suggests that core formation was an ongoing process parallel to the accretion of Earth. The composition of the core is model dependent and thus uncertain and makes reliable estimates for siderophile and chalcophile element concentrations of bulk Earth difficult. Improved stable isotope analyses show isotopic similarities with noncarbonaceous chondrites (NCC), while the chemical composition of the mantle of the Earth indicates similarities with carbonaceous chondrites (CC). In detail, however, it can be shown that no single known meteorite group, nor any mixture of meteorite groups can match the chemical and isotopic composition of Earth. This conclusion is extremely important for any formation model of the Earth.


Condensation Calculations in Planetary Science and Cosmochemistry  

Denton S. Ebel

The Sun’s chemical and isotopic composition records the composition of the solar nebula from which the planets formed. If a piece of the Sun is cooled to 1,000 K at 1 mbar total pressure, a mineral assemblage is produced that is consistent with the minerals found in the least equilibrated (most chemically heterogeneous), oldest, and compositionally Sunlike (chondritic), hence most “primitive,” meteorites. This is an equilibrium or fractional condensation experiment. The result can be simulated by calculations using equations of state for hundreds of gaseous molecules, condensed mineral solids, and silicate liquids, the products of a century of experimental measurements and recent theoretical studies. Such calculations have revolutionized our understanding of the chemistry of the cosmos. The mid-20th century realization that meteorites are fossil records of the early solar system made chemistry central to understanding the origin of the Earth, Moon, and other bodies. Thus “condensation,” more generally the distribution of elements and isotopes between vapor and condensed solids and/or liquids at or approaching chemical equilibrium, came to deeply inform discussion of how meteoritic and cometary compositions bear on the origins of atmospheres and oceans and the differences in composition among the planets. This expansion of thinking has had profound effects upon our thinking about the origin and evolution of Earth and the other worlds of our solar system. Condensation calculations have also been more broadly applied to protoplanetary disks around young stars, to the mineral “rain” of mineral grains expected to form in cool dwarf star atmospheres, to the expanding circumstellar envelopes of giant stars, to the vapor plumes expected to form in giant planetary impacts, and to the chemically and isotopically distinct “shells” computed and observed to exist in supernovae. The beauty of equilibrium condensation calculations is that the distribution of elements between gaseous molecules, solids, and liquids is fixed by temperature, total pressure, and the overall elemental composition of the system. As with all sophisticated calculations, there are inherent caveats, subtleties, and computational difficulties. In particular, local equilibrium chemistry has yet to be consistently integrated into gridded, dynamical astrophysical simulations so that effects like the blocking of light and heat by grains (opacity), absorption and re-emission of light by grains (radiative transfer), and buffering of heat by grain evaporation/condensation are fed back into the physics at each node or instance of a gridded calculation over time. A deeper integration of thermochemical computations of chemistry with physical models makes the prospect of a general protoplanetary disk model as hopeful in the 2020s as a general circulation model for global climate may have been in the early 1970s.


The Recognition of Meteorites and Ice Ages  

Alan E. Rubin

Two important scientific questions that confronted 18th- and 19th-century naturalists were whether continental glaciation had occurred thousands of years earlier and whether extraterrestrial rocks occasionally fell to Earth. Eventual recognition of these hypotheses as real phenomena resulted from initial reports by nonprofessionals, subsequent investigation by skeptical scientists, and vigorous debate. Evidence that kilometer-thick glaciers had once covered Northern Europe and Canada included (a) the resemblance of scratched and polished rocks near mountain glaciers to those located in unglaciated U-shaped valleys; (b) the similarity of poorly sorted rocks and debris within “drift deposits” (moraines) to the sediment load of glaciers; and (c) the discovery of freezing meltwater at the base of glaciers, hypothesized to facilitate their movement. Three main difficulties naturalists had with accepting the notion that rocks fell from the sky were that (a) meteorite falls are localized events, generally unwitnessed by professional scientists; (b) mixed in with reports of falling rocks were fabulous accounts of falling masses of blood, flesh, milk, gelatin, and other substances; and (c) the phenomenon of falling rocks could neither be predicted nor verified by experiment. Five advances leading to the acceptance of meteorites were (a) Ernst Chladni’s 1794 treatise linking meteors, fireballs, and falling rocks; (b) meteor observations conducted in 1798 showing the high altitudes and enormous velocities of their meteoroid progenitors; (c) a spate of several widely witnessed meteorite falls between 1794 and 1807 in Europe, India, and America; (d) chemical analyses of several meteorites by Edward Charles Howard in 1802, showing all contained nickel (which is rare in the Earth’s crust); and (e) the discoveries of four asteroids between 1801 and 1807, providing a plausible extraterrestrial source for meteorites.