1-9 of 9 Results  for:

  • Planetary Chemistry and Cosmochemistry x
  • Planet Formation x
Clear all

Article

Condensation Calculations in Planetary Science and Cosmochemistry  

Denton S. Ebel

The Sun’s chemical and isotopic composition records the composition of the solar nebula from which the planets formed. If a piece of the Sun is cooled to 1,000 K at 1 mbar total pressure, a mineral assemblage is produced that is consistent with the minerals found in the least equilibrated (most chemically heterogeneous), oldest, and compositionally Sunlike (chondritic), hence most “primitive,” meteorites. This is an equilibrium or fractional condensation experiment. The result can be simulated by calculations using equations of state for hundreds of gaseous molecules, condensed mineral solids, and silicate liquids, the products of a century of experimental measurements and recent theoretical studies. Such calculations have revolutionized our understanding of the chemistry of the cosmos. The mid-20th century realization that meteorites are fossil records of the early solar system made chemistry central to understanding the origin of the Earth, Moon, and other bodies. Thus “condensation,” more generally the distribution of elements and isotopes between vapor and condensed solids and/or liquids at or approaching chemical equilibrium, came to deeply inform discussion of how meteoritic and cometary compositions bear on the origins of atmospheres and oceans and the differences in composition among the planets. This expansion of thinking has had profound effects upon our thinking about the origin and evolution of Earth and the other worlds of our solar system. Condensation calculations have also been more broadly applied to protoplanetary disks around young stars, to the mineral “rain” of mineral grains expected to form in cool dwarf star atmospheres, to the expanding circumstellar envelopes of giant stars, to the vapor plumes expected to form in giant planetary impacts, and to the chemically and isotopically distinct “shells” computed and observed to exist in supernovae. The beauty of equilibrium condensation calculations is that the distribution of elements between gaseous molecules, solids, and liquids is fixed by temperature, total pressure, and the overall elemental composition of the system. As with all sophisticated calculations, there are inherent caveats, subtleties, and computational difficulties. In particular, local equilibrium chemistry has yet to be consistently integrated into gridded, dynamical astrophysical simulations so that effects like the blocking of light and heat by grains (opacity), absorption and re-emission of light by grains (radiative transfer), and buffering of heat by grain evaporation/condensation are fed back into the physics at each node or instance of a gridded calculation over time. A deeper integration of thermochemical computations of chemistry with physical models makes the prospect of a general protoplanetary disk model as hopeful in the 2020s as a general circulation model for global climate may have been in the early 1970s.

Article

Element Partitioning (Mineral-Melt, Metal-/Sulfide-Silicate) in Planetary Sciences  

Brandon Mahan

Element partitioning—at its most basic—is the distribution of an element of interest between two constituent phases as a function of some process. Major constituent elements generally affect the thermodynamic environment (chemical equilibrium) and therefore trace element partitioning is often considered, as trace elements are present in minute quantities and their equilibrium exchange reactions do not impart significant changes to the larger system. Trace elements are responsive to thermodynamic conditions, and thus they act as passive tracers of chemical reactions without appreciably influencing the bulk reactions themselves. In planetary sciences, the phase pairs typically considered are mineral-melt, metal-silicate, and sulfide-silicate, owing largely to the ubiquity of their coexistence in planetary materials across scales and context, from the micrometer-sized components of meteorites up to the size of planets (thousands of kilometers). It is common to speak of trace elements in terms of their tendency toward forming metallic, sulfidic, or oxide phases, and the terms “siderophile,” “chalcophile,” and “lithophile” (respectively) are used to define these tendencies under what is known as the Goldschmidt Classification scheme. The metric of an element’s tendency to concentrate into one phase relative to another is expressed as the ratio of its concentration (as a weight or molar fraction) in one phase over another, where convention dictates the reference frame as solid over liquid, and metal or sulfide over silicate; this mathematical term is the element’s partition coefficient, or distribution coefficient, between the two respective phases, D M Phase B Phase A (where M is the element of interest, most often reported as molar fraction), or simply D M . In general, trace elements obey Henry’s Law, where the element’s activity and concentration are linearly proportional. Practically speaking, this means that the element is sufficiently dilute in the system such that its atoms interact negligibly with one another compared to their interactions with major element phases, and thus the trace element’s partition coefficient in most settings is not appreciably affected by its concentration. The radius and charge of an element’s ionized species (its ionic radius and valence state)—in relation to either the major element ion for which it is substituting or the lattice site vacancy or interstitial space it is filling—generally determine the likelihood of trace element substitution or vacancy/interstitial fill (along with the net charge of the lattice space). The key energy consideration that underlies an element’s partitioning is the Gibbs free energy of reaction between the phases involved. Gibbs free energy is the change in internal energy associated with a chemical reaction (at a given temperature and pressure) that can be used to do work, and is denoted as Δ G rxn . Reactions with negative Δ G rxn values are spontaneous, and the magnitude of this negative value for a given phase, for example, a metal oxide, denotes the relative affinity of the metal toward forming oxides. That is to say, an element with a highly negative Δ G rxn for its oxide species at relevant pressure-temperature conditions will tend to be found in oxide and silicate minerals, that is, it will be lithophile (and vice versa for siderophile elements). Trace element partitioning systematics in mineral-melt and metal-/sulfide-silicate systems have boundless applications in planetary science. A growing collective understanding of the partition coefficients of elements has been built on decades of physical chemistry, deterministic theory, petrology, experimental petrology, and natural observations. Leveraging this immense intellectual, technical, and methodological foundation, modern trace element partitioning research is particularly aimed at constraining the evolution of plate tectonics on Earth (conditions and timing of onset), understanding the formation history of planetary materials such as chondrite meteorites and their constituents (e.g., chondrules), and de-convolving the multiply operating processes at play during the accretion and differentiation of Earth and other terrestrial planets.

Article

Formation, Composition, and Evolution of the Earth’s Core  

Francis Nimmo

The Earth’s core formed by multiple collisions with differentiated protoplanets. The Hf-W (hafnium-tungsten) isotopic system reveals that these collisions took place over a timescale of tens of megayears (Myr), in agreement with accretion simulations. The degree to which the iron and silicates re-equilibrated during each collision is uncertain and affects the apparent core age derived from tungsten isotopic measurements. Seismological data reveal that the core contains light elements in addition to Fe-Ni, and the outer core is more enriched in such elements than the inner core. Because O is excluded efficiently from solid iron, O is almost certainly an important constituent of the outer core. The identity of other elements is less certain, despite intensive measurements of their effects on seismic velocities, densities, and partitioning behavior at appropriate pressures and temperatures. Si and O are very likely present, with perhaps some S; C and H are less likely. Si and Mg may have exsolved over time, potentially helping to drive the geodynamo and producing a low-density layer at the top of the core. Radioactive elements (U, Th, K) are unlikely to be present in important concentrations. The cooling of the core is controlled by the mantle’s ability to extract heat. The geodynamo has existed for at least 3.5 gigayears (Gyr), placing a lower bound on the heat flow out of the core. Because the thermal conductivity of the core is uncertain by a factor of ~3, the lower bound on this heat flow is similarly uncertain. Once the inner core started to crystallize, additional sources of energy were available to power the geodynamo. Inner core crystallization likely started in the time range 0.5 to 2.0 Gyr Before Present (BP); paleomagnetic arguments have been advanced for inner core growth starting at several different epochs within this time range.

Article

Iron Meteorites: Composition, Age, and Origin  

Edward R. D. Scott

Iron meteorites are thought to be samples of metallic cores and pools that formed in diverse small planetary bodies. Their great diversity offers remarkable insights into the formation of asteroids and the early history of the solar system. The chemical compositions of iron meteorites generally match those predicted from experimental and theoretical considerations of melting in small bodies. These bodies, called planetesimals, were composed of mixtures of grains of silicates, metallic iron-nickel, and iron sulfide with compositions and proportions like those in chondrite meteorites. Melting in planetesimals caused dense metal to sink through silicate so that metallic cores formed. A typical iron meteorite contains 5–10% nickel, ~0.5% cobalt, 0.1–0.5% phosphorus, 0.1–1% sulfur and over 20 other elements in trace amounts. A few percent of iron meteorites also contain silicate inclusions, which should have readily separated from molten metal because of their buoyancy. They provide important evidence for impacts between molten or partly molten planetesimals. The major heat source for melting planetesimals was the radioactive isotope 26Al, which has a half-life of 0.7 million years. However, a few iron meteorites probably formed by impact melting of chondritic material. Impact processes were also important in the creation of many iron meteorites when planetesimals were molten. Chemical analysis show that most iron meteorites can be divided into 14 groups: about 15% appear to come from another 50 or more poorly sampled parent bodies. Chemical variations within all but three groups are consistent with fractional crystallization of molten cores of planetesimals. The other three groups are richer in silicates and probably come from pools of molten metal in chondritic bodies. Isotopic analysis provides formation ages for iron meteorites and clues to their provenance. Isotopic dating suggests that the parent bodies of iron meteorites formed before those of chondrites, and some irons appear to be the oldest known meteorites. Their unexpected antiquity is consistent with 26Al heating of planetesimals. Bodies that accreted more than ~2 million years after the oldest known solids (refractory inclusions in chondrites) should not have contained enough 26Al to melt. Isotopic analysis also shows that iron meteorites, like other meteorite types, display small anomalies due to pre-solar grains that were not homogenized in the solar nebula (or protoplanetary disk). Although iron meteorites are derived from asteroids, their isotopic anomalies provide the best clues that some come from planetesimals that did not form in the asteroid belt. Some may have formed beyond Jupiter; others show isotopic similarities to Earth and may have formed in the neighborhood of the terrestrial planets. Iron meteorites therefore contain important clues to the formation of planetesimals that melted and they also provide constraints on theories for the formation of planets and asteroids.

Article

Isotopic Dating  

Yuri Amelin

Isotopic dating is the measurement of time using the decay of radioactive isotopes and accumulation of decay products at a known rate. With isotopic chronometers, we determine the time of the processes that fractionate parent and daughter elements. Modern isotopic dating can resolve time intervals of ~1 million years over the entire lifespan of the Earth and the Solar System, and has even higher time resolution for the earliest and the most recent geological history. Using isotopic dates, we can build a unified scale of time for the evolution of Earth, the Moon, Mars, and asteroids, and expand it as samples from other planets become available for study. Modern geochronology and cosmochronology rely on isotopic dating methods that are based on decay of very long-lived radionuclides: 238U, 235U, 40K, 87Rb, 147Sm, etc. to stable radiogenic nuclides 206Pb, 207Pb, 40K, 40Ca, 87Sr, 143Nd, and moderately long-lived radionuclides: 26Al, 53Mn, 146Sm, 182Hf, to stable nuclides 26Mg, 53Cr, 142Nd, 182W. The diversity of physical and chemical properties of parent (radioactive) and daughter (radiogenic) nuclides, their geochemical and cosmochemical affinities, and the resulting diversity of processes that fractionate parent and daughter elements, allows direct isotopic dating of a vast range of earth and planetary processes. These processes include, but are not limited to evaporation and condensation, precipitation and dissolution, magmatism, metamorphism, metasomatism, sedimentation and diagenesis, ore formation, formation of planetary cores, crystallisation of magma oceans, and the timing of major impact events. Processes that cannot be dated directly, such as planetary accretion, can be bracketed between two datable events.

Article

Meteorite Mineralogy  

Alan E. Rubin and Chi Ma

Meteorites are rocks from outer space that reach the Earth; more than 60,000 have been collected. They are derived mainly from asteroids; a few hundred each are from the Moon and Mars; some micrometeorites derive from comets. By mid 2020, about 470 minerals had been identified in meteorites. In addition to having characteristic petrologic and geochemical properties, each meteorite group has a distinctive set of pre-terrestrial minerals that reflect the myriad processes that the meteorites and their components experienced. These processes include condensation in gaseous envelopes around evolved stars, crystallization in chondrule melts, crystallization in metallic cores, parent-body aqueous alteration, and shock metamorphism. Chondrites are the most abundant meteorites; the major components within them include chondrules, refractory inclusions, opaque assemblages, and fine-grained silicate-rich matrix material. The least-metamorphosed chondrites preserve minerals inherited from the solar nebula such as olivine, enstatite, metallic Fe-Ni, and refractory phases. Other minerals in chondrites formed on their parent asteroids during thermal metamorphism (such as chromite, plagioclase and phosphate), aqueous alteration (such as magnetite and phyllosilicates) and shock metamorphism (such as ringwoodite and majorite). Differentiated meteorites contain minerals formed by crystallization from magmas; these phases include olivine, orthopyroxene, Ca-plagioclase, Ca-pyroxene, metallic Fe-Ni and sulfide. Meteorites also contain minerals formed during passage through the Earth’s atmosphere and via terrestrial weathering after reaching the surface. Whereas some minerals form only by a single process (e.g., by high-pressure shock metamorphism or terrestrial weathering of a primary phase), other meteoritic minerals can form by several different processes, including condensation, crystallization from melts, thermal metamorphism, and aqueous alteration.

Article

Solar Elemental Abundances  

Katharina Lodders

Solar elemental abundances, or solar system elemental abundances, refer to the complement of chemical elements in the entire Solar System. The Sun contains more than 99% of the mass in the solar system and therefore the composition of the Sun is a good proxy for the composition of the overall solar system. The solar system composition can be taken as the overall composition of the molecular cloud within the interstellar medium from which the solar system formed 4.567 billion years ago. Active research areas in astronomy and cosmochemistry model collapse of a molecular cloud of solar composition into a star with a planetary system and the physical and chemical fractionation of the elements during planetary formation and differentiation. The solar system composition is the initial composition from which all solar system objects (the Sun, terrestrial planets, gas giant planets, planetary satellites and moons, asteroids, Kuiper-belt objects, and comets) were derived. Other dwarf stars (with hydrostatic hydrogen-burning in their cores) like the Sun (type G2V dwarf star) within the solar neighborhood have compositions similar to the Sun and the solar system composition. In general, differential comparisons of stellar compositions provide insights about stellar evolution as functions of stellar mass and age and ongoing nucleosynthesis but also about galactic chemical evolution when elemental compositions of stellar populations across the Milky Way Galaxy is considered. Comparisons to solar composition can reveal element destruction (e.g., Li) in the Sun and in other dwarf stars. The comparisons also show element production of, for example, C, N, O, and the heavy elements made by the s-process in low to intermediate mass stars (3–7 solar masses) after these evolved from their dwarf-star stage into red giant stars (where hydrogen and helium burning can occur in shells around their cores). The solar system abundances are and have been a critical test composition for nucleosynthesis models and models of galactic chemical evolution, which aim ultimately to track the production of the elements heavier than hydrogen and helium in the generation of stars that came forth after the Big Bang 13.4 billion years ago.

Article

Steam Atmospheres and Magma Oceans on Planets  

Keiko Hamano

A magma ocean is a global layer of partially or fully molten rocks. Significant melting of terrestrial planets likely occurs due to heat release during planetary accretion, such as decay heat of short-lived radionuclides, impact energy released by continuous planetesimal accretion, and energetic impacts among planetary-sized bodies (giant impacts). Over a magma ocean, all water, which is released upon impact or degassed from the interior, exists as superheated vapor, forming a water-dominated, steam atmosphere. A magma ocean extending to the surface is expected to interact with the overlying steam atmosphere through material and heat exchange. Impact degassing of water starts when the size of a planetary body becomes larger than Earth’s moon or Mars. The degassed water could build up and form a steam atmosphere on protoplanets growing by planetesimal accretion. The atmosphere has a role in preventing accretion energy supplied by planetesimals from escaping, leading to the formation of a magma ocean. Once a magma ocean forms, part of the steam atmosphere would start to dissolve into the surface magma due to the high solubility of water into silicate melt. Theoretical studies indicated that as long as the magma ocean is present, a negative feedback loop can operate to regulate the amount of the steam atmosphere and to stabilize the surface temperature so that a radiative energy balance is achieved. Protoplanets can also accrete the surrounding H 2 -rich disk gas. Water could be produced by oxidation of H 2 by ferrous iron in the magma. The atmosphere and water on protoplanets could be a mixture of outgassed and disk-gas components. Planets formed by giant impact would experience a global melting on a short timescale. A steam atmosphere could grow by later outgassing from the interior. Its thermal blanketing and greenhouse effects are of great importance in controlling the cooling rate of the magma ocean. Due to the presence of a runaway greenhouse threshold, the crystallization timescale and water budget of terrestrial planets can depend on the orbital distance from the host star. The terrestrial planets in our solar system essentially have no direct record of their earliest history, whereas observations of young terrestrial exoplanets may provide us some insight into what early terrestrial planets and their atmosphere are like. Evolution of protoplanets in the framework of pebble accretion remains unexplored.

Article

The Formation and Evolution of the Solar System  

Mikhail Marov

The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula’s inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.