1-5 of 5 Results

  • Keywords: chondrites x
Clear all


Meteorite Mineralogy  

Alan E. Rubin and Chi Ma

Meteorites are rocks from outer space that reach the Earth; more than 60,000 have been collected. They are derived mainly from asteroids; a few hundred each are from the Moon and Mars; some micrometeorites derive from comets. By mid 2020, about 470 minerals had been identified in meteorites. In addition to having characteristic petrologic and geochemical properties, each meteorite group has a distinctive set of pre-terrestrial minerals that reflect the myriad processes that the meteorites and their components experienced. These processes include condensation in gaseous envelopes around evolved stars, crystallization in chondrule melts, crystallization in metallic cores, parent-body aqueous alteration, and shock metamorphism. Chondrites are the most abundant meteorites; the major components within them include chondrules, refractory inclusions, opaque assemblages, and fine-grained silicate-rich matrix material. The least-metamorphosed chondrites preserve minerals inherited from the solar nebula such as olivine, enstatite, metallic Fe-Ni, and refractory phases. Other minerals in chondrites formed on their parent asteroids during thermal metamorphism (such as chromite, plagioclase and phosphate), aqueous alteration (such as magnetite and phyllosilicates) and shock metamorphism (such as ringwoodite and majorite). Differentiated meteorites contain minerals formed by crystallization from magmas; these phases include olivine, orthopyroxene, Ca-plagioclase, Ca-pyroxene, metallic Fe-Ni and sulfide. Meteorites also contain minerals formed during passage through the Earth’s atmosphere and via terrestrial weathering after reaching the surface. Whereas some minerals form only by a single process (e.g., by high-pressure shock metamorphism or terrestrial weathering of a primary phase), other meteoritic minerals can form by several different processes, including condensation, crystallization from melts, thermal metamorphism, and aqueous alteration.


Condensation Calculations in Planetary Science and Cosmochemistry  

Denton S. Ebel

The Sun’s chemical and isotopic composition records the composition of the solar nebula from which the planets formed. If a piece of the Sun is cooled to 1,000 K at 1 mbar total pressure, a mineral assemblage is produced that is consistent with the minerals found in the least equilibrated (most chemically heterogeneous), oldest, and compositionally Sunlike (chondritic), hence most “primitive,” meteorites. This is an equilibrium or fractional condensation experiment. The result can be simulated by calculations using equations of state for hundreds of gaseous molecules, condensed mineral solids, and silicate liquids, the products of a century of experimental measurements and recent theoretical studies. Such calculations have revolutionized our understanding of the chemistry of the cosmos. The mid-20th century realization that meteorites are fossil records of the early solar system made chemistry central to understanding the origin of the Earth, Moon, and other bodies. Thus “condensation,” more generally the distribution of elements and isotopes between vapor and condensed solids and/or liquids at or approaching chemical equilibrium, came to deeply inform discussion of how meteoritic and cometary compositions bear on the origins of atmospheres and oceans and the differences in composition among the planets. This expansion of thinking has had profound effects upon our thinking about the origin and evolution of Earth and the other worlds of our solar system. Condensation calculations have also been more broadly applied to protoplanetary disks around young stars, to the mineral “rain” of mineral grains expected to form in cool dwarf star atmospheres, to the expanding circumstellar envelopes of giant stars, to the vapor plumes expected to form in giant planetary impacts, and to the chemically and isotopically distinct “shells” computed and observed to exist in supernovae. The beauty of equilibrium condensation calculations is that the distribution of elements between gaseous molecules, solids, and liquids is fixed by temperature, total pressure, and the overall elemental composition of the system. As with all sophisticated calculations, there are inherent caveats, subtleties, and computational difficulties. In particular, local equilibrium chemistry has yet to be consistently integrated into gridded, dynamical astrophysical simulations so that effects like the blocking of light and heat by grains (opacity), absorption and re-emission of light by grains (radiative transfer), and buffering of heat by grain evaporation/condensation are fed back into the physics at each node or instance of a gridded calculation over time. A deeper integration of thermochemical computations of chemistry with physical models makes the prospect of a general protoplanetary disk model as hopeful in the 2020s as a general circulation model for global climate may have been in the early 1970s.


Solar Elemental Abundances  

Katharina Lodders

Solar elemental abundances, or solar system elemental abundances, refer to the complement of chemical elements in the entire Solar System. The Sun contains more than 99% of the mass in the solar system and therefore the composition of the Sun is a good proxy for the composition of the overall solar system. The solar system composition can be taken as the overall composition of the molecular cloud within the interstellar medium from which the solar system formed 4.567 billion years ago. Active research areas in astronomy and cosmochemistry model collapse of a molecular cloud of solar composition into a star with a planetary system and the physical and chemical fractionation of the elements during planetary formation and differentiation. The solar system composition is the initial composition from which all solar system objects (the Sun, terrestrial planets, gas giant planets, planetary satellites and moons, asteroids, Kuiper-belt objects, and comets) were derived. Other dwarf stars (with hydrostatic hydrogen-burning in their cores) like the Sun (type G2V dwarf star) within the solar neighborhood have compositions similar to the Sun and the solar system composition. In general, differential comparisons of stellar compositions provide insights about stellar evolution as functions of stellar mass and age and ongoing nucleosynthesis but also about galactic chemical evolution when elemental compositions of stellar populations across the Milky Way Galaxy is considered. Comparisons to solar composition can reveal element destruction (e.g., Li) in the Sun and in other dwarf stars. The comparisons also show element production of, for example, C, N, O, and the heavy elements made by the s-process in low to intermediate mass stars (3–7 solar masses) after these evolved from their dwarf-star stage into red giant stars (where hydrogen and helium burning can occur in shells around their cores). The solar system abundances are and have been a critical test composition for nucleosynthesis models and models of galactic chemical evolution, which aim ultimately to track the production of the elements heavier than hydrogen and helium in the generation of stars that came forth after the Big Bang 13.4 billion years ago.



Kun Wang and Randy Korotev

For thousands of years, people living in Egypt, China, Greece, Rome, and other parts of the world have been fascinated by shooting stars, which are the light and sound phenomena commonly associated with meteorite impacts. The earliest written record of a meteorite fall is logged by Chinese chroniclers in 687 bce. However, centuries before that, Egyptians had been using “heavenly iron” to make their first iron tools, including a dagger found in King Tutankhamun’s tomb that dates back to the 14th century bce. Even though human beings have a long history of observing meteors and utilizing meteorites, we did not start to recognize their true celestial origin until the Age of Enlightenment. In 1794 German physicist and musician Ernst Chladni was the first to summarize the scientific evidence and to demonstrate that these unique objects are indeed from outside of the Earth. After more than two centuries of joint efforts by countless keen amateur, academic, institutional, and commercial collectors, more than 60,000 meteorites have been catalogued and classified in the Meteoritical Bulletin Database. This number is continually growing, and meteorites are found all over the world, especially in dry and sparsely populated regions such as Antarctica and the Sahara Desert. Although there are thousands of individual meteorites, they can be handily classified into three broad groups by simple examinations of the specimens. The most common type is stony meteorite, which is made of mostly silicate rocks. Iron meteorites are the easiest to be preserved for thousands (or even millions) of years on the Earth’s surface environments, and they are composed of iron and nickel metals. The stony-irons contain roughly the same amount of metals and silicates, and these spectacular meteorites are the favorites of many collectors and museums. After 200 years, meteoritics (the science of meteorites) has grown out of its infancy and become a vibrant area of research today. The general directions of meteoritic studies are: (1) mineralogy, identifying new minerals or mineral phases that rarely or seldom found on the Earth; (2) petrology, studying the igneous and aqueous textures that give meteorites unique appearances, and providing information about geologic processes on the bodies upon which the meteorites originates; (3) geochemistry, characterizing their major, trace elemental, and isotopic compositions, and conducting interplanetary comparisons; and (4) chronology, dating the ages of the initial crystallization and later on impacting disturbances. Meteorites are the only extraterrestrial samples other than Apollo lunar rocks and Hayabusa asteroid samples that we can directly analyze in laboratories. Through the studies of meteorites, we have quested a vast amount of knowledge about the origin of the Solar System, the nature of the molecular cloud, the solar nebula, the nascent Sun and its planetary bodies including the Earth and its Moon, Mars, and many asteroids. In fact, the 4.6-billion-year age of the whole Solar System is solely defined by the oldest age dated in meteorites, which marked the beginning of everything we appreciate today.


Iron Meteorites: Composition, Age, and Origin  

Edward R. D. Scott

Iron meteorites are thought to be samples of metallic cores and pools that formed in diverse small planetary bodies. Their great diversity offers remarkable insights into the formation of asteroids and the early history of the solar system. The chemical compositions of iron meteorites generally match those predicted from experimental and theoretical considerations of melting in small bodies. These bodies, called planetesimals, were composed of mixtures of grains of silicates, metallic iron-nickel, and iron sulfide with compositions and proportions like those in chondrite meteorites. Melting in planetesimals caused dense metal to sink through silicate so that metallic cores formed. A typical iron meteorite contains 5–10% nickel, ~0.5% cobalt, 0.1–0.5% phosphorus, 0.1–1% sulfur and over 20 other elements in trace amounts. A few percent of iron meteorites also contain silicate inclusions, which should have readily separated from molten metal because of their buoyancy. They provide important evidence for impacts between molten or partly molten planetesimals. The major heat source for melting planetesimals was the radioactive isotope 26Al, which has a half-life of 0.7 million years. However, a few iron meteorites probably formed by impact melting of chondritic material. Impact processes were also important in the creation of many iron meteorites when planetesimals were molten. Chemical analysis show that most iron meteorites can be divided into 14 groups: about 15% appear to come from another 50 or more poorly sampled parent bodies. Chemical variations within all but three groups are consistent with fractional crystallization of molten cores of planetesimals. The other three groups are richer in silicates and probably come from pools of molten metal in chondritic bodies. Isotopic analysis provides formation ages for iron meteorites and clues to their provenance. Isotopic dating suggests that the parent bodies of iron meteorites formed before those of chondrites, and some irons appear to be the oldest known meteorites. Their unexpected antiquity is consistent with 26Al heating of planetesimals. Bodies that accreted more than ~2 million years after the oldest known solids (refractory inclusions in chondrites) should not have contained enough 26Al to melt. Isotopic analysis also shows that iron meteorites, like other meteorite types, display small anomalies due to pre-solar grains that were not homogenized in the solar nebula (or protoplanetary disk). Although iron meteorites are derived from asteroids, their isotopic anomalies provide the best clues that some come from planetesimals that did not form in the asteroid belt. Some may have formed beyond Jupiter; others show isotopic similarities to Earth and may have formed in the neighborhood of the terrestrial planets. Iron meteorites therefore contain important clues to the formation of planetesimals that melted and they also provide constraints on theories for the formation of planets and asteroids.