1-2 of 2 Results

  • Keywords: giant planets x
Clear all

Article

Planet Formation Through Gravitational Instabilities  

Ken Rice

It is now widely accepted that planets form in discs around young stars, with the most widely accepted planet formation scenario being a bottom-up process typically referred to as “core accretion.” The basic process involves a core growing through the accumulation of solids and, if it gets massive enough while there is still gas present in the disc, undergoing a runaway gas accretion phase to form a Jupiter-like gas giant. However, early models of this process suggested that the formation timescale for a Jupiter-like gas giant exceeded the lifetime of the gas disc, suggesting that massive, gas giant planets form via some alternative process. One possibility is that they form via direct gravitational collapse. During the earliest stages of star formation, the disc around a young star can have a mass that is comparable to that of the central protostar and can be susceptible to the growth of a gravitational instability. One outcome of such an instability is that the disc fragments into bound objects that can then contract to become gas giant planets. This would happen very early in the star formation process and is very rapid, overcoming the timescale problem. Subsequent work has, however, both illustrated that core accretion may operate on timescales shorter than disc lifetimes and that disc fragmentation is very unlikely to operate in the inner parts of planet-forming discs. Hence, it is very unlikely that disc fragmentation plays a role in the direct formation of close-in exoplanets. However, disc fragmentation may operate at large orbital radii and is expected to preferentially form either massive gas giant planets or brown dwarfs. Therefore, it is intriguing that exactly such objects are starting to be directly imaged at orbital radii where disc fragmentation may operate. Additionally, even if a self-gravitating phase doesn’t play a direct role in the formation of gas giant planets, it may play an indirect role in the planet formation process. The spiral density waves that develop due to the gravitational instability can act to enhance the local density of solids, potentially accelerating their collisional growth or leading to the direct gravitational collapse of the solid component of the disc. This could then provide some of the building blocks for planets that later form via core accretion.

Article

Planetary Atmospheres: Chemistry and Composition  

Channon Visscher

The observed composition of a planetary atmosphere is the product of planetary formation and evolution, including the chemical and physical processes shaping atmospheric abundances into the present day. In the solar system, the gas giant planets Jupiter, Saturn, Uranus, and Neptune possess massive molecular envelopes consisting mostly of H2 and He along with various minor amounts of heavy elements such as C, N, and O (present as CH4, NH3, and H2O, respectively) and numerous additional minor species. The terrestrial planets Venus, Earth, and Mars each possess a relatively thin atmospheric envelope surrounding a rocky surface. The atmospheres of Mars and Venus are characterized by abundant CO2 with a small amount of N2, whereas the atmosphere of the Earth is dominated by N2 and O2. Such differences provide clues to the divergent pathways of atmospheric evolution. Numerous closely coupled physical and chemical processes give rise to the abundances observed in the planetary atmospheres of the solar system. These processes include the maintenance of thermochemical equilibrium, reaction kinetics, atmospheric transport, photochemistry, condensation (including cloud formation) and vaporization, deposition and sublimation, diurnal and seasonal effects, greenhouse effects, surface–atmosphere reactions, volcanic activity, and (in the case of Earth) biogenic and anthropogenic sources. The present understanding of the chemical composition of planetary atmospheres is the result of over a century of observations, including ground-based, space-based, and in situ measurements of the major, minor, trace, and isotopic species found on each planet. These observations have been accompanied by experimental studies of planetary materials and the development of theoretical models to identify the key processes shaping atmospheric abundances observed today.