1-10 of 10 Results

  • Keywords: ice x
Clear all


Water Ice Permafrost on Mars and on the Moon  

Maxim Litvak and Anton Sanin

The Moon and Mars are the most explored planetary bodies in the solar system. For the more than 60 years of the space era, dozens of science robotic missions have explored the Moon and Mars. The primary scientific goal for many of these missions was declared to be a search for surface or ground water/water ice and gaining an understanding of its distribution and origin. Today, for the Moon, the focus of scientific exploration has moved to the lunar polar regions and permanently shadowed regions (PSRs). PSRs do not receive any direct sunlight and are frozen at very low temperatures (< 120 K), acting as cold traps. They are considered to be a storehouse that preserves records of the solar system’s evolution by trapping water ice and potentially other volatile deposits brought by comets and asteroids over billions of years. For Mars, the water/water ice search was part of an attempt to find traces of ancient extraterrestrial life and possibly to understand how life appeared on Earth. Current Mars is cold and dry, but its high latitudes and some equatorial regions are enriched with surface and subsurface water ice. Scientists argue that oceans could have existed on ancient Mars if it was warm and wet and that different life forms could have originated similar to Earth’s. If this is the case, then biomarkers could be preserved in the Martian ground ice depositions. Another popular idea that ties water ice permafrost on the Moon and Mars is related to the expected future human expansion to deep space. The Moon and Mars are widely considered to be the first destinations for future manned space-colony missions or even space-colony missions. In this scenario, the long-term presence and survival of astronauts on the lunar or Martian surface strongly depend on in situ resource utilization (ISRU). Water ice is at the top of the ISRU list because it could be used as water for astronauts’ needs. Its constituents, oxygen and hydrogen, could be used for breathing and for rocket fuel production, respectively. The Moon is the closest body to Earth and discussion about presence of water ice on the Moon has both scientific and practical interest, especially for planning manned space missions. The focus further in space is on how subsurface water ice is distributed on Mars. A related topic is the debates about whether ancient Mars was wet and warm or if, for most of its history, the Martian surface was covered with glaciers. Finally, there are fundamental questions that should be answered by upcoming Mars and Moon missions.


Water Ice at Mid-Latitudes on Mars  

Frances E. G. Butcher

Mars’s mid-latitudes, corresponding approximately to the 30°–60° latitude bands in both hemispheres, host abundant water ice in the subsurface. Ice is unstable with respect to sublimation at Mars’s surface beyond the polar regions, but can be preserved in the subsurface at mid-to-high latitudes beneath a centimeters-to-meters-thick covering of lithic material. In Mars’s mid-latitudes, water ice is present as pore ice between grains of the martian soil (termed “regolith”) and as deposits of excess ice exceeding the pore volume of the regolith. Excess ice is present as lenses within the regolith, as extensive layers tens to hundreds of meters thick, and as debris-covered glaciers with evidence of past flow. Subsurface water ice on Mars has been inferred indirectly using numerous techniques including numerical modeling, observations of surface geomorphology, and thermal, spectral, and ground-penetrating radar analyses. Ice exposures have also been imaged directly by orbital and landed missions to Mars. Shallow pore ice can be explained by the diffusion and freezing of atmospheric water vapor into the regolith. The majority of known excess ice deposits in Mars’s mid-latitudes are, however, better explained by deposition from the atmosphere (e.g., via snowfall) under climatic conditions different from the present day. They are thought to have been emplaced within the last few million to 1 billion years, during large-scale mobilization of Mars’s water inventory between the poles, equator, and mid-latitude regions under cyclical climate changes. Thus, water ice deposits in Mars’s mid-latitudes probably host a rich record of geologically recent climate changes on Mars. Mid-latitude ice deposits are leading candidate targets for in situ resource utilization of water ice by future human missions to Mars, which may be able to sample the deposits to access such climate records. In situ water resources will be required for rocket fuel production, surface operations, and life support systems. Thus, it is essential that the nature and distribution of mid-latitude ice deposits on Mars are characterized in detail.


The Atmosphere of Uranus  

Leigh N. Fletcher

Uranus provides a unique laboratory to test current understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere punctuated by storms, waves, and dark vortices, evolving slowly under the seasonal influence of Uranus’s extreme axial tilt. Condensables like methane and hydrogen sulphide play a crucial role in shaping circulation, clouds, and storm phenomena via latent heat release through condensation, strong equator-to-pole gradients suggestive of equatorial upwelling and polar subsidence, and the formation of stabilizing layers that may decouple different circulation and convective regimes as a function of depth. Phase transitions in the watery depths may also decouple Uranus’s atmosphere from motions within the interior. Weak vertical mixing and low atmospheric temperatures associated with Uranus’s negligible internal heat means that stratospheric methane photochemistry occurs in a unique high-pressure regime, decoupled from the influx of external oxygen. The low homopause also allows for the formation of an extensive ionosphere. Finally, the atmosphere provides a window on the bulk composition of Uranus—the ice-to-rock ratio, supersolar elemental and isotopic enrichments inferred from remote sensing, and future in situ measurements—providing key insights into its formation and subsequent migration. As a cold, hydrogen-dominated, intermediate-sized, slowly rotating, and chemically enriched world, Uranus could be the closest and best example of atmospheric processes on a class of worlds that may dominate the census of planets beyond our own solar system. Future missions to the Uranian system must carry a suite of instrumentation capable of advancing knowledge of the time-variable circulation, composition, meteorology, chemistry, and clouds on this enigmatic “ice giant.”


A Retrospective on Mars Polar Ice and Climate  

Isaac B. Smith

The polar regions of Mars contain layered ice deposits that are rich in detail of past periods of accumulation and erosion. These north and south polar layered deposits (NPLD and SPLD, respectively) contain primarily water–ice and ~5% and ~10% dust derived from the atmosphere, respectively. In addition, the SPLD has two known CO2 deposits—one thin unit at the surface and one buried, much thicker unit. Together, they comprise less than 1% of the SPLD volume. Mars also experiences seasonal deposits of CO2 that form in winter and sublimate in spring and early summer. These seasonal caps are visible from Earth and have been studied for centuries. Zooming in, exposed layers at the PLDs reveal histories of climate change that resulted when orbital parameters such as obliquity, eccentricity, and argument of perihelion changed over tens of thousands to millions of years. Simpler environmental conditions at the NPLD, especially related to seasonal and aeolian processes, make interpreting the history of that polar cap much easier than the SPLD. The history of Mars polar science is linked by numerous incremental advancements and unexpected discoveries related to the observed geology of both poles, the interpreted and modeled climatic conditions that gave rise to the PLDs, and the atmospheric conditions that modify the surface.


Thermal Physics of Cometary Nuclei  

Dina Prialnik

Cometary nuclei, as small, spinning, ice-rich objects revolving around the sun in eccentric orbits, are powered and activated by solar radiation. Far from the sun, most of the solar energy is reradiated as thermal emission, whereas close to the sun, it is absorbed by sublimation of ice. Only a small fraction of the solar energy is conducted into the nucleus interior. The rate of heat conduction determines how deep and how fast this energy is dissipated. The conductivity of cometary nuclei, which depends on their composition and porosity, is estimated based on vastly different models ranging from very simple to extremely complex. The characteristic response to heating is determined by the skin depth, the thermal inertia, and the thermal diffusion timescale, which depend on the comet’s structure and dynamics. Internal heat sources include the temperature-dependent crystallization of amorphous water ice, which becomes important at temperatures above about 130 K; occurs in spurts; and releases volatiles trapped in the ice. These, in turn, contribute to heat transfer by advection and by phase transitions. Radiogenic heating resulting from the decay of short-lived unstable nuclei such as 26Al heats the nucleus shortly after formation and may lead to compositional alterations. The thermal evolution of the nucleus is described by thermo-physical models that solve mass and energy conservation equations in various geometries, sometimes very complicated, taking into account self-heating. Solutions are compared with actual measurements from spacecraft, mainly during the Rosetta mission, to deduce the thermal properties of the nucleus and decipher its activity pattern.


Martian Paleoclimate  

Robert M. Haberle

The climate of Mars has evolved over time. Early in its history, between 3.7 and 4.1 billion years ago, the climate was warmer and wetter and the atmosphere thicker than it is today. Erosion rates were higher than today, and liquid water flowed on the planet’s surface, carving valley networks, filling lakes, creating deltas, and weathering rocks. This implies runoff and suggests rainfall and/or snowmelt. Oceans may have existed. Over time, the atmosphere thinned, erosion rates declined, water activity ceased, and cooler and drier conditions prevailed. Ice became the dominate form of surface water. Yet the climate continued to evolve, driven now by large variations in Mars’ orbit parameters. Beating in rhythm with these variations, surface ice has been repeatedly mobilized and moved around the planet, glaciers have advanced and retreated, dust storms and polar caps have come and gone, and the atmosphere has collapsed and re-inflated many times. The layered terrains that now characterize both polar regions are telltale signatures of this cyclical behavior and owe their existence to modulations of the seasonal cycles of dust, water, and CO2. Contrary to the early images from the Mariner flybys of the 1960s, Mars is and has been a dynamically active planet whose surface has been partly shaped through its interaction with a changing atmosphere and climate system.


The Recognition of Meteorites and Ice Ages  

Alan E. Rubin

Two important scientific questions that confronted 18th- and 19th-century naturalists were whether continental glaciation had occurred thousands of years earlier and whether extraterrestrial rocks occasionally fell to Earth. Eventual recognition of these hypotheses as real phenomena resulted from initial reports by nonprofessionals, subsequent investigation by skeptical scientists, and vigorous debate. Evidence that kilometer-thick glaciers had once covered Northern Europe and Canada included (a) the resemblance of scratched and polished rocks near mountain glaciers to those located in unglaciated U-shaped valleys; (b) the similarity of poorly sorted rocks and debris within “drift deposits” (moraines) to the sediment load of glaciers; and (c) the discovery of freezing meltwater at the base of glaciers, hypothesized to facilitate their movement. Three main difficulties naturalists had with accepting the notion that rocks fell from the sky were that (a) meteorite falls are localized events, generally unwitnessed by professional scientists; (b) mixed in with reports of falling rocks were fabulous accounts of falling masses of blood, flesh, milk, gelatin, and other substances; and (c) the phenomenon of falling rocks could neither be predicted nor verified by experiment. Five advances leading to the acceptance of meteorites were (a) Ernst Chladni’s 1794 treatise linking meteors, fireballs, and falling rocks; (b) meteor observations conducted in 1798 showing the high altitudes and enormous velocities of their meteoroid progenitors; (c) a spate of several widely witnessed meteorite falls between 1794 and 1807 in Europe, India, and America; (d) chemical analyses of several meteorites by Edward Charles Howard in 1802, showing all contained nickel (which is rare in the Earth’s crust); and (e) the discoveries of four asteroids between 1801 and 1807, providing a plausible extraterrestrial source for meteorites.


The Pluto−Charon System  

Will Grundy

Pluto orbits the Sun at a mean distance of 39.5 AU (astronomical units; 1 AU is the mean distance between the Earth and the Sun), with an orbital period of 248 Earth years. Its orbit is just eccentric enough to cross that of Neptune. They never collide thanks to a 2:3 mean-motion resonance: Pluto completes two orbits of the Sun for every three by Neptune. The Pluto system consists of Pluto and its large satellite Charon, plus four small satellites: Styx, Nix, Kerberos, and Hydra. Pluto and Charon are spherical bodies, with diameters of 2,377 and 1,212 km, respectively. They are tidally locked to one another such that each spins about its axis with the same 6.39-day period as their mutual orbit about their common barycenter. Pluto’s surface is dominated by frozen volatiles nitrogen, methane, and carbon monoxide. Their vapor pressure supports an atmosphere with multiple layers of photochemical hazes. Pluto’s equator is marked by a belt of dark red maculae, where the photochemical haze has accumulated over time. Some regions are ancient and cratered, while others are geologically active via processes including sublimation and condensation, glaciation, and eruption of material from the subsurface. The surfaces of the satellites are dominated by water ice. Charon has dark red polar stains produced from chemistry fed by Pluto’s escaping atmosphere. The existence of a planet beyond Neptune had been postulated by Percival Lowell and William Pickering in the early 20th century to account for supposed clustering in comet aphelia and perturbations of the orbit of Uranus. Both lines of evidence turned out to be spurious, but they motivated a series of searches that culminated in Clyde Tombaugh’s discovery of Pluto in 1930 at the observatory Lowell had founded in Arizona. Over subsequent decades, basic facts about Pluto were hard-won through application of technological advances in astronomical instrumentation. During the progression from photographic plates through photoelectric photometers to digital array detectors, space-based telescopes, and ultimately, direct exploration by robotic spacecraft, each revealed more about Pluto. A key breakthrough came in 1978 with the discovery of Charon by Christy and Harrington. Charon’s orbit revealed the mass of the system. Observations of stellar occultations constrained the sizes of Pluto and Charon and enabled the detection of Pluto’s atmosphere in 1988. Spectroscopic instruments revealed Pluto’s volatile ices. In a series of mutual events from 1985 through 1990, Pluto and Charon alternated in passing in front of the other as seen from Earth. Observations of these events provided additional constraints on their sizes and albedo patterns and revealed their distinct compositions. The Hubble Space Telescope’s vantage above Earth’s atmosphere enabled further mapping of Pluto’s albedo patterns and the discovery of the small satellites. NASA’s New Horizons spacecraft flew through the system in 2015. Its instruments mapped the diversity and compositions of geological features on Pluto and Charon and provided detailed information on Pluto’s atmosphere and its interaction with the solar wind.


Trans-Neptunian Dwarf Planets  

Bryan J. Holler

The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter, and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as follows: Any non-satellite large enough to be rounded by its own gravity. Practically speaking, this means any non-satellite with a diameter larger than 400 km. In the trans-Neptunian region, there are more than 150 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the history of the migration of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others like Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of non-volatile species, such as H2O (water), NH3 (ammonia), and complex hydrocarbons, provides valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 point to ancient cryovolcanism caused by internal differentiation of ice from rock. Complex hydrocarbons, formed through radiation processing of surface ices, such as CH4, record the radiation histories of these objects and provide clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the more than 150 TNO dwarf planets are key to understanding the formation of the solar system and its subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.


Landslides in the Solar System  

Maria Teresa Brunetti and Silvia Peruccacci

Landslides are mass movements of rock, earth, or debris. All of these surface processes occur under the influence of gravity, meaning that they globally move material from higher to lower places. On planets other than Earth, these structures were first observed in a lunar crater during the Apollo program, but mass movements have been found on many rocky worlds (solid bodies) in the Solar System, including icy satellites, asteroids, and comets. On Earth, landslides have the effect of shaping the landscape more or less rapidly, leaving a signature that is recognized through field surveys and visual analysis or automatic identification on ground-based, aerial, and satellite images. Landslides observed on Earth and on solid bodies of the Solar System can be classified into different types based on their movement and the material involved in the failure. Material is either rock or soil (or both), with a variable fraction of water or ice; a soil mainly composed of sand-sized or finer particles is referred as earth while debris is composed of coarser fragments. The landslide mass may be displaced in several types of movement, classified generically as falling, toppling, sliding, spreading, or flowing. Such diverse characteristics mean that the size of a landslide (e.g., area, volume, fall height, length) can vary widely. For example, on Earth, their area ranges up to 11 orders of magnitude, while their volume varies by 16 orders, from small rock fragments to huge submarine landslides. The classification of extraterrestrial landslides is based on terrestrial analogs having similarities and characteristics that resemble those found on planetary bodies, such as Mars. The morphological classification is made regardless of the geomorphological environment or processes that may have triggered the slope failure. Comparing landslide characteristics on various planetary bodies helps to understand the effect of surface gravity on landslide initiation and propagation—of tremendous importance when designing manned and unmanned missions with landings on extraterrestrial bodies. Regardless of the practical applications of such study, knowing the morphology and surface dynamics that shape solid bodies in the space surrounding the Earth is something that has fascinated the human imagination since the time of Galileo.