1-3 of 3 Results

  • Keywords: impact craters x
Clear all

Article

Cratering  

Boris Ivanov

Impacts of small celestial bodies, in terms of energy density, occupy the range between ordinary chemical high explosives and nuclear explosions. The high initial energy density of impact gives them some features of an explosion (shock waves, melting and vaporization, mechanical disruption of target rocks). A near-surface burst creates an explosion crater, and an impact often results in the creation of an impact crater. The chain of processes connected to an impact crater’s formation is named “impact cratering” or simply “cratering.” The initial kinetic energy and momenta of the impacting body (“projectile”) generates shock waves (decaying with propagation to seismic waves), heats the material (at high impact velocities, to melt or to boil target rocks). A part of the kinetic energy is converted to target material motion, creating the crater cavity. The final crater geometry depends on the scale of event—while small craters are simple bowl-shaped cavities, large enough crater transient cavities collapse in the gravity field. If collapse takes place, the final crater has a complex geometry with central peaks and concentric inner rings. The boundary crater diameter, dividing simple and complex craters, varies with target body gravity and rock strength. Comparison of a crater’s morphology on remote planets and asteroids allows us to make some estimates about their mechanical parameters (e.g., strength and friction) even before future sample return missions. On many planets large impact craters can be seen, preserved much better than on the geologically active Earth. These observations help researchers to interpret the geological and geophysical data obtained for the relatively few and heavily modified large impact craters found on continents and (rarely) at the sea bottom.

Article

The Recognition of Meteorites and Ice Ages  

Alan E. Rubin

Two important scientific questions that confronted 18th- and 19th-century naturalists were whether continental glaciation had occurred thousands of years earlier and whether extraterrestrial rocks occasionally fell to Earth. Eventual recognition of these hypotheses as real phenomena resulted from initial reports by nonprofessionals, subsequent investigation by skeptical scientists, and vigorous debate. Evidence that kilometer-thick glaciers had once covered Northern Europe and Canada included (a) the resemblance of scratched and polished rocks near mountain glaciers to those located in unglaciated U-shaped valleys; (b) the similarity of poorly sorted rocks and debris within “drift deposits” (moraines) to the sediment load of glaciers; and (c) the discovery of freezing meltwater at the base of glaciers, hypothesized to facilitate their movement. Three main difficulties naturalists had with accepting the notion that rocks fell from the sky were that (a) meteorite falls are localized events, generally unwitnessed by professional scientists; (b) mixed in with reports of falling rocks were fabulous accounts of falling masses of blood, flesh, milk, gelatin, and other substances; and (c) the phenomenon of falling rocks could neither be predicted nor verified by experiment. Five advances leading to the acceptance of meteorites were (a) Ernst Chladni’s 1794 treatise linking meteors, fireballs, and falling rocks; (b) meteor observations conducted in 1798 showing the high altitudes and enormous velocities of their meteoroid progenitors; (c) a spate of several widely witnessed meteorite falls between 1794 and 1807 in Europe, India, and America; (d) chemical analyses of several meteorites by Edward Charles Howard in 1802, showing all contained nickel (which is rare in the Earth’s crust); and (e) the discoveries of four asteroids between 1801 and 1807, providing a plausible extraterrestrial source for meteorites.

Article

Impact Crater Densities as a Tool for Dating Planetary Surfaces  

William K. Hartmann

The use of impact crater densities to estimate the ages of planetary surfaces began in the 1960s. Some predictive successes have been confirmed with radiometric dating of sites on the Moon and Mars. The method is highly dependent on our understanding of the rate of crater formation on different worlds, and, more importantly, on the history of that rate, starting with intense cratering during planetary formation 4.5 Ga ago. The system is thus calibrated by obtaining radiometric dates from samples of relatively homogeneous geologic units on various worlds. Crater chronometry is still in its infancy. Future sample-returns and in situ measurements, obtained by missions from collaborating nations to various worlds, will provide ever-increasing improvements in the system in coming decades. Such data can lead to at least two-significant-figure measurements, not only of the ages of broad geologic provinces on solar system worlds, but of the characteristic survival times of various-sized smaller craters. Such data, in turn, clarify the rates of turnover of surface materials and the production rates of gravel-like regolith and megaregolith in the surface layers. Better measurements of the impact rate at various times, in turn, support better modeling of the accretion and fragmentation processes among early planetesimals as well as contemporary asteroids, in various parts of the solar system. Once the crater chronometry system is calibrated for various planetary bodies, important chronological information about those various planetary bodies can be obtained by orbital missions, without the need for expensive sample-return or lander missions on each individual surface.