1-6 of 6 Results

  • Keywords: planet formation x
Clear all


Migration of Low-Mass Planets  

Frédéric S. Masset

Planet migration is the variation over time of a planet’s semimajor axis, leading to either a contraction or an expansion of the orbit. It results from the exchange of energy and angular momentum between the planet and the disk in which it is embedded during its formation and can cause the semimajor axis to change by as much as two orders of magnitude over the disk’s lifetime. The migration of forming protoplanets is an unavoidable process, and it is thought to be a key ingredient for understanding the variety of extrasolar planetary systems. Although migration occurs for protoplanets of all masses, its properties for low-mass planets (those having up to a few Earth masses) differ significantly from those for high-mass planets. The torque that is exerted by the disk on the planet is composed of different contributions. While migration was first thought to be invariably inward, physical processes that are able to halt or even reverse migration were later uncovered, leading to the realization that the migration path of a forming planet has a very sensitive dependence on the underlying disk parameters. There are other processes that go beyond the case of a single planet experiencing smooth migration under the disk’s tide. This is the case of planetary migration in low-viscosity disks, a fashionable research avenue because protoplanetary disks are thought to have very low viscosity, if any, over most of their planet-forming regions. Such a process is generally significantly chaotic and has to be tackled through high-resolution numerical simulations. The migration of several low-mass planets is also is a very fashionable topic, owing to the discovery by the Kepler mission of many multiple extrasolar planetary systems. The orbital properties of these systems suggest that at least some of them have experienced substantial migration. Although there have been many studies to account for the orbital properties of these systems, there is as yet no clear picture of the different processes that shaped them. Finally, some recently unveiled processes could be important for the migration of low-mass planets. One process is aero-resonant migration, in which a swarm of planetesimals subjected to aerodynamic drag push a planet inward when they reach a mean-motion resonance with the planet, while another process is based on so-called thermal torques, which arise when thermal diffusion in the disk is taken into account, or when the planet, heated by accretion, releases heat into the ambient gas.


Planet Formation Through Gravitational Instabilities  

Ken Rice

It is now widely accepted that planets form in discs around young stars, with the most widely accepted planet formation scenario being a bottom-up process typically referred to as “core accretion.” The basic process involves a core growing through the accumulation of solids and, if it gets massive enough while there is still gas present in the disc, undergoing a runaway gas accretion phase to form a Jupiter-like gas giant. However, early models of this process suggested that the formation timescale for a Jupiter-like gas giant exceeded the lifetime of the gas disc, suggesting that massive, gas giant planets form via some alternative process. One possibility is that they form via direct gravitational collapse. During the earliest stages of star formation, the disc around a young star can have a mass that is comparable to that of the central protostar and can be susceptible to the growth of a gravitational instability. One outcome of such an instability is that the disc fragments into bound objects that can then contract to become gas giant planets. This would happen very early in the star formation process and is very rapid, overcoming the timescale problem. Subsequent work has, however, both illustrated that core accretion may operate on timescales shorter than disc lifetimes and that disc fragmentation is very unlikely to operate in the inner parts of planet-forming discs. Hence, it is very unlikely that disc fragmentation plays a role in the direct formation of close-in exoplanets. However, disc fragmentation may operate at large orbital radii and is expected to preferentially form either massive gas giant planets or brown dwarfs. Therefore, it is intriguing that exactly such objects are starting to be directly imaged at orbital radii where disc fragmentation may operate. Additionally, even if a self-gravitating phase doesn’t play a direct role in the formation of gas giant planets, it may play an indirect role in the planet formation process. The spiral density waves that develop due to the gravitational instability can act to enhance the local density of solids, potentially accelerating their collisional growth or leading to the direct gravitational collapse of the solid component of the disc. This could then provide some of the building blocks for planets that later form via core accretion.


Planetary Systems Around White Dwarfs  

Dimitri Veras

White dwarf planetary science is a rapidly growing field of research featuring a diverse set of observations and theoretical explorations. Giant planets, minor planets, and debris discs have all been detected orbiting white dwarfs. The innards of broken-up minor planets are measured on an element-by-element basis, providing a unique probe of exoplanetary chemistry. Numerical simulations and analytical investigations trace the violent physical and dynamical history of these systems from astronomical unit (au)-scale distances to the immediate vicinity of the white dwarf, where minor planets are broken down into dust and gas and accrete onto the white dwarf photosphere. Current and upcoming ground-based and space-based instruments are likely to further accelerate the pace of discoveries.


The Orbital Architecture of Exoplanetary Systems  

John C. B. Papaloizou

The great diversity of extrasolar planetary systems has challenged our understanding of how planets form. During the formation process their orbits are modified while the protoplanetary disk is present. After its dispersal orbits may also be modified as a result of mutual gravitational interactions leading to their currently observed configurations in the longer term. A number of potentially significant phenomena have been identified. These include radial migration of solids in the protoplanetary disk, radial migration of protoplanetary cores produced by disk-planet interaction and how it can be halted by protoplanet traps, formation of resonant systems and subsystems, and gravitational interactions among planets or between a planet and an external stellar companion. These interactions may cause excitation of orbital inclinations and eccentricities which in the latter case may attain values close to unity. When the eccentricity approaches unity, tidal interaction with the central star could lead to orbital circularization and a close orbiting Hot Jupiter, providing a competitive process to direct migration through the disk or in-situ formation. Long-term dynamical instability may also account for the relatively small number of observed compact systems of super-Earths and Neptune class planets that have attained and subsequently maintained linked commensurabilities in the long term.


Planet Formation  

Morris Podolak

Modern observational techniques are still not powerful enough to directly view planet formation, and so it is necessary to rely on theory. However, observations do give two important clues to the formation process. The first is that the most primitive form of material in interstellar space exists as a dilute gas. Some of this gas is unstable against gravitational collapse, and begins to contract. Because the angular momentum of the gas is not zero, it contracts along the spin axis, but remains extended in the plane perpendicular to that axis, so that a disk is formed. Viscous processes in the disk carry most of the mass into the center where a star eventually forms. In the process, almost as a by-product, a planetary system is formed as well. The second clue is the time required. Young stars are indeed observed to have gas disks, composed mostly of hydrogen and helium, surrounding them, and observations tell us that these disks dissipate after about 5 to 10 million years. If planets like Jupiter and Saturn, which are very rich in hydrogen and helium, are to form in such a disk, they must accrete their gas within 5 million years of the time of the formation of the disk. Any formation scenario one proposes must produce Jupiter in that time, although the terrestrial planets, which don’t contain significant amounts of hydrogen and helium, could have taken longer to build. Modern estimates for the formation time of the Earth are of the order of 100 million years. To date there are two main candidate theories for producing Jupiter-like planets. The core accretion (CA) scenario supposes that any solid materials in the disk slowly coagulate into protoplanetary cores with progressively larger masses. If the core remains small enough it won’t have a strong enough gravitational force to attract gas from the surrounding disk, and the result will be a terrestrial planet. If the core grows large enough (of the order of ten Earth masses), and the disk has not yet dissipated, then the planetary embryo can attract gas from the surrounding disk and grow to be a gas giant. If the disk dissipates before the process is complete, the result will be an object like Uranus or Neptune, which has a small, but significant, complement of hydrogen and helium. The main question is whether the protoplanetary core can grow large enough before the disk dissipates. A second scenario is the disk instability (DI) scenario. This scenario posits that the disk itself is unstable and tends to develop regions of higher than normal density. Such regions collapse under their own gravity to form Jupiter-mass protoplanets. In the DI scenario a Jupiter-mass clump of gas can form—in several hundred years which will eventually contract into a gas giant planet. The difficulty here is to bring the disk to a condition where such instabilities will form. Now that we have discovered nearly 3000 planetary systems, there will be numerous examples against which to test these scenarios.


Trans-Neptunian Dwarf Planets  

Bryan J. Holler

The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter, and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as follows: Any non-satellite large enough to be rounded by its own gravity. Practically speaking, this means any non-satellite with a diameter larger than 400 km. In the trans-Neptunian region, there are more than 150 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the history of the migration of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others like Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of non-volatile species, such as H2O (water), NH3 (ammonia), and complex hydrocarbons, provides valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 point to ancient cryovolcanism caused by internal differentiation of ice from rock. Complex hydrocarbons, formed through radiation processing of surface ices, such as CH4, record the radiation histories of these objects and provide clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the more than 150 TNO dwarf planets are key to understanding the formation of the solar system and its subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.