1-7 of 7 Results

  • Keywords: asteroids x
Clear all

Article

Henry Hsieh

The study of active asteroids is a relatively new field of study in Solar System science, focusing on objects with asteroid-like orbits but that exhibit comet-like activity. This field, which crosses traditionally drawn lines between research focused on inactive asteroids and active comets, has motivated reevaluations of classical assumptions about small Solar System objects and presents exciting new opportunities for learning more about the origin and evolution of the Solar System. Active asteroids whose activity appears to be driven by the sublimation of volatile ices could have significant implications for determining the origin of the Earth’s water—and therefore its ability to support life—and also challenge traditional assumptions about the survivability of ice in the warm inner Solar System. Meanwhile, active asteroids whose activity appears to be caused by disruptive processes such as impacts or rotational destabilization provide exciting opportunities to gain insights into fundamental processes operating in the asteroid belt and assessing their effects on the asteroid population seen in the 21st century.

Article

Kevin Righter

Asteroids 1 Ceres and 4 Vesta are the two most massive asteroids in the asteroid belt, with mean diameters of 946 km and 525 km, respectively. Ceres was reclassified as a dwarf planet by the International Astronomical Union as a result of its new dwarf planet definition which is a body that (a) orbits the sun, (b) has enough mass to assume a nearly round shape, (c) has not cleared the neighborhood around its orbit, and (d) is not a moon. Scientists’ understanding of these two bodies has been revolutionized in the past decade by the success of the Dawn mission that visited both bodies. Vesta is an example of a small body that has been heated substantially and differentiated into a metallic core, silicate mantle, and basaltic crust. Ceres is a volatile-rich rocky body that experienced less heating than Vesta and has differentiated into rock and ice. These two contrasting bodies have been instrumental in learning how inner solar system material formed and evolved.

Article

Alan E. Rubin and Chi Ma

Meteorites are rocks from outer space that reach the Earth; more than 60,000 have been collected. They are derived mainly from asteroids; a few hundred each are from the Moon and Mars; some micrometeorites derive from comets. By mid 2020, about 470 minerals had been identified in meteorites. In addition to having characteristic petrologic and geochemical properties, each meteorite group has a distinctive set of pre-terrestrial minerals that reflect the myriad processes that the meteorites and their components experienced. These processes include condensation in gaseous envelopes around evolved stars, crystallization in chondrule melts, crystallization in metallic cores, parent-body aqueous alteration, and shock metamorphism. Chondrites are the most abundant meteorites; the major components within them include chondrules, refractory inclusions, opaque assemblages, and fine-grained silicate-rich matrix material. The least-metamorphosed chondrites preserve minerals inherited from the solar nebula such as olivine, enstatite, metallic Fe-Ni, and refractory phases. Other minerals in chondrites formed on their parent asteroids during thermal metamorphism (such as chromite, plagioclase and phosphate), aqueous alteration (such as magnetite and phyllosilicates) and shock metamorphism (such as ringwoodite and majorite). Differentiated meteorites contain minerals formed by crystallization from magmas; these phases include olivine, orthopyroxene, Ca-plagioclase, Ca-pyroxene, metallic Fe-Ni and sulfide. Meteorites also contain minerals formed during passage through the Earth’s atmosphere and via terrestrial weathering after reaching the surface. Whereas some minerals form only by a single process (e.g., by high-pressure shock metamorphism or terrestrial weathering of a primary phase), other meteoritic minerals can form by several different processes, including condensation, crystallization from melts, thermal metamorphism, and aqueous alteration.

Article

Iron meteorites are thought to be samples of metallic cores and pools that formed in diverse small planetary bodies. Their great diversity offers remarkable insights into the formation of asteroids and the early history of the solar system. The chemical compositions of iron meteorites generally match those predicted from experimental and theoretical considerations of melting in small bodies. These bodies, called planetesimals, were composed of mixtures of grains of silicates, metallic iron-nickel, and iron sulfide with compositions and proportions like those in chondrite meteorites. Melting in planetesimals caused dense metal to sink through silicate so that metallic cores formed. A typical iron meteorite contains 5–10% nickel, ~0.5% cobalt, 0.1–0.5% phosphorus, 0.1–1% sulfur and over 20 other elements in trace amounts. A few percent of iron meteorites also contain silicate inclusions, which should have readily separated from molten metal because of their buoyancy. They provide important evidence for impacts between molten or partly molten planetesimals. The major heat source for melting planetesimals was the radioactive isotope 26Al, which has a half-life of 0.7 million years. However, a few iron meteorites probably formed by impact melting of chondritic material. Impact processes were also important in the creation of many iron meteorites when planetesimals were molten. Chemical analysis show that most iron meteorites can be divided into 14 groups: about 15% appear to come from another 50 or more poorly sampled parent bodies. Chemical variations within all but three groups are consistent with fractional crystallization of molten cores of planetesimals. The other three groups are richer in silicates and probably come from pools of molten metal in chondritic bodies. Isotopic analysis provides formation ages for iron meteorites and clues to their provenance. Isotopic dating suggests that the parent bodies of iron meteorites formed before those of chondrites, and some irons appear to be the oldest known meteorites. Their unexpected antiquity is consistent with 26Al heating of planetesimals. Bodies that accreted more than ~2 million years after the oldest known solids (refractory inclusions in chondrites) should not have contained enough 26Al to melt. Isotopic analysis also shows that iron meteorites, like other meteorite types, display small anomalies due to pre-solar grains that were not homogenized in the solar nebula (or protoplanetary disk). Although iron meteorites are derived from asteroids, their isotopic anomalies provide the best clues that some come from planetesimals that did not form in the asteroid belt. Some may have formed beyond Jupiter; others show isotopic similarities to Earth and may have formed in the neighborhood of the terrestrial planets. Iron meteorites therefore contain important clues to the formation of planetesimals that melted and they also provide constraints on theories for the formation of planets and asteroids.

Article

Throughout the history of human activity in outer space, the role of private companies has steadily grown, and, in some cases, companies have even replaced government agencies as the primary actors in space. As private space activity has grown and diversified, the laws and regulations that govern private actors have been forced to evolve in reaction to the new realities of the industry. On the international level, the treaties concluded in the 1960s and 1970s continue to be in force today. However, these treaties only govern state activity in space. The rules regulating private industry are necessarily domestic in nature, and it is in these domestic laws that the evolution of space law can be most clearly seen. That said, new industries, such as asteroid mining, are testing the limits of international law and have forced the international community to examine whether changes to long-standing laws are needed.

Article

V.V. Shevchenko

Since the early 1990s, in analytical reviews, experts have increasingly been paying attention to the growing scarcity of rare and rare earth metals (REM) necessary for the development of advanced technologies in modern industry. The volume of the world market has increased over the past 50 years from 5,000 to 125,000 tons per year, which is explained by the extensive use of REM in the rapidly developing areas of industry associated with the advancement of high technology. Unique properties of REM are primarily used in the aerospace and other industrial sectors of the economy, and therefore are strategic materials. For example, platinum is an indispensable element that is used as a catalyst for chemical reactions. No battery can do without platinum. If all the millions of vehicles traveling along our roads installed hybrid batteries, all platinum reserves on Earth would end in the next 15 years! Consumers are interested in six elements known as the platinum group of metals (PGM): iridium (Ir), osmium (Os), palladium (palladium, Pd), rhodium (rhodium, Rh), ruthenium (ruthenium, Ru), and platinum itself. These elements, rare on the Earth, possess unique chemical and physical properties, which makes them vital industrial materials. To solve this problem, projects were proposed for the utilization of the substance of asteroids approaching the Earth. According to modern estimates, the number of known asteroids approaching the Earth reaches more than 9,000. Despite the difficulties of seizing, transporting, and further developing such an object in space, this way of solving the problem seemed technologically feasible and cost-effectively justified. A 10 m iron-nickel asteroid could contain up to 75 tons of rare metals and REM, primarily PGM, equivalent to a commercial price of about $2.8 billion in 2016 prices. However, the utilization of an asteroid substance entering the lunar surface can be technologically simpler and economically more cost-effective. Until now, it was believed that the lunar impact craters do not contain the rocks of the asteroids that formed them, since at high velocities the impactors evaporate during a collision with the lunar surface. According to the latest research, it turned out that at a fall rate of less than 12 km/s falling body (drummer) can partially survive in a mechanically fractured state. Consequently, the number of possible resources present on the lunar surface can be attributed to nickel, cobalt, platinum, and rare metals of asteroid origin. The calculations show that the total mass, for example, of platinum and platinoids on the lunar surface as a result of the fall of asteroids may amount more than 14 million tons. It should be noted that the world’s known reserves of platinum group metals on the Earth are about 80,000 tons.

Article

Alexander T. Basilevsky

Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth’s satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy “meteoritic” bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.