1-3 of 3 Results

  • Keywords: modeling x
Clear all

Article

Matthew R. Balme

Dust devils are rotating columns or cones of air, loaded with dust and other fine particles, that are most often found in arid or desert areas. They are common on both Mars and Earth, despite Mars’ very thin atmosphere. The smallest and least intense dust devils might last only a few 10s of seconds and be just a meters or two across. The largest dust devils can persist for hours and are intensely swirling columns of dust with “skirts” of sand at their base, 10s or more meters in diameter and hundreds of meters high; even larger examples have been seen on Mars. Dust devils on Earth have been documented for thousands of years, but scientific observations really began in the early 20th century, culminating in a period of intense research in the 1960s. The discovery of dust devils on Mars was made using data from the NASA Viking lander and orbiter missions in the late 1970s and early 1980s and stimulated a renewed scientific interest in dust devils. Observations from subsequent lander, rover, and orbital missions show that Martian dust devils are common but heterogeneously distributed in space and time and have a significant effect on surface albedo (often leaving “tracks” on the surface) but do not appear to be triggers of global or major dust storms. An aspiration of future research is to synthesize observations and detailed models of dust devils to estimate more accurately their role in dust lifting at both local and global scales, both on Earth and on Mars.

Article

Francisco González-Galindo

The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in electron concentration at altitude about 120–140 km, coincident with the peak of the ionization rate. Below, there is a secondary peak produced by solar X-rays and photoelectron-impact ionization. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2 +, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma becomes more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as solar radiation reaching the planet, the neutral atmosphere, meteoric influx, atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to observations by the Mars Express and MAVEN orbiters in the 2010s, our knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous measurements by different space missions. Numerical simulations by computational models able to simulate the processes that shape the ionosphere have also been commonly employed to obtain information about this region, to provide an interpretation of the observations and to fill their gaps. As a result, at the end of the 2010s the Martian ionosphere was the best known one after that of the Earth. However, there are still areas for which our knowledge is far from being complete. Examples are the details and balance of the mechanisms populating the nightside ionosphere, the origin and variability of the lower ionospheric peak, and the precise mechanisms shaping the topside ionosphere.

Article

Joachim Friedrich Quack

The five visible planets are certainly attested to in Egyptian sources from about 2000 bce. The three outer ones are religiously connected with the falcon-headed god Horus, Venus with his father Osiris, and Mercury with Seth, the brother and murderer of Osiris. Clear attestations of the planets are largely limited to decoration programs covering the whole night sky. There are a number of passages in religious texts where planets may be mentioned, but many of them are uncertain because the names given to the planets are for most of them not specific enough to exclude other interpretations. There may have been a few treatises giving a more detailed religious interpretation of the planets and their behavior, but they are badly preserved and hardly understandable in the details. In the Late Period, probably under Mesopotamian influence, the sequence of the planets as well as their religious associations could change; at least one source links Saturn with the Sun god, Mars with Miysis, Mercury with Thot, Venus with Horus, son of Isis, and Jupiter with Amun, arranging the planets with those considered negative in astrology first, separated from the positive ones by the vacillating Mercury. Late monuments depicting the zodiac place the planets in positions which are considered important in astrology, especially the houses or the place of maximum power (hypsoma; i.e., “exaltation”). Probably under Babylonian influence, in the Greco-Roman Period mathematical models for calculating the positions and phases of the planets arose. These were used for calculating horoscopes, of which a number in demotic Egyptian are attested. There are also astrological treatises (most still unpublished) in the Egyptian language which indicate the relevance of planets for forecasts, especially for the fate of individuals born under a certain constellation, but also for events important for the king and the country in general; they could be relevant also for enterprises begun at a certain date. There is some reception of supposedly or actually specific Egyptian planet sequences, names and religious associations in Greek sources.