1-20 of 21 Results  for:

  • Planet Formation x
Clear all

Article

Accretion Processes  

Alessandro Morbidelli

In planetary science, accretion is the process in which solids agglomerate to form larger and larger objects, and eventually planets are produced. The initial conditions are a disc of gas and microscopic solid particles, with a total mass of about 1% of the gas mass. These discs are routinely detected around young stars and are now imaged with the new generation of instruments. Accretion has to be effective and fast. Effective, because the original total mass in solids in the solar protoplanetary disk was probably of the order of ~300 Earth masses, and the mass incorporated into the planets is ~100 Earth masses. Fast, because the cores of the giant planets had to grow to tens of Earth masses to capture massive doses of hydrogen and helium from the disc before the dispersal of the latter, in a few millions of years. The surveys for extrasolar planets have shown that most stars have planets around them. Accretion is therefore not an oddity of the solar system. However, the final planetary systems are very different from each other, and typically very different from the solar system. Observations have shown that more than 50% of the stars have planets that don’t have analogues in the solar system. Therefore the solar system is not the typical specimen. Models of planet accretion have to explain not only how planets form, but also why the outcomes of the accretion history can be so diverse. There is probably not one accretion process but several, depending on the scale at which accretion operates. A first process is the sticking of microscopic dust into larger grains and pebbles. A second process is the formation of an intermediate class of objects called planetesimals. There are still planetesimals left in the solar system. They are the asteroids orbiting between the orbits of Mars and Jupiter, the trans-Neptunian objects in the distant system, and other objects trapped along the orbits of the planets (Trojans) or around the giant planets themselves (irregular satellites). The Oort cloud, source of the long period comets, is also made of planetesimals ejected from the region of formation of the giant planets. A third accretion process has to lead from planetesimals to planets. Actually, several processes can be involved in this step, from collisional coagulation among planetesimals to the accretion of small particles under the effect of gas drag, to giant impacts between protoplanets. Adopting a historical perspective of all these processes provides details of the classic processes investigated in the past decades to those unveiled in the last years. The quest for planet formation is ongoing. Open issues remain, and exciting future developments are expected.

Article

Asteroid Ryugu and the Hayabusa2 Mission  

Sei-ichiro Watanabe and Shota Kikuchi

The carbonaceous type (C-type) asteroid Ryugu is a near-Earth object measuring ~1 km in equatorial diameter. C-type asteroids of this size are seldom found in the near-Earth region, making Ryugu an invaluable target for a sample return mission. Studying Ryugu offers insights into the Solar System formation and the transportation of volatile components from the asteroid belt to the early Earth. The Hayabusa2 spacecraft, developed by the Japan Aerospace Explosion Agency (JAXA), was launched on an H-IIA rocket in December 2014. It reached Ryugu in June 2018, and for 17 months, it closely observed the asteroid using optical and thermal imagers, a near-infrared spectrometer, and a laser altimeter. The spacecraft deployed three small rovers and a lander onto Ryugu surface, allowing for in-depth imaging and measurements. Furthermore, Hayabusa2 executed two precise touchdowns on different regions of the asteroid for sampling and initiated an impact experiment that created an artificial crater on Ryugu. During the second touchdown, subsurface materials ejected from the artificial crater were collected. Hayabusa2 departed from Ryugu in November 2019 and returned a capsule containing Ryugu samples to Earth in December 2020. Having successfully completed its sample return mission, Hayabusa2 is now en route to its next objective: a rendezvous with a small, rapidly rotating asteroid in July 2031. Ryugu is a rubble-pile asteroid, formed through the re-accumulation of fragments of a disrupted parent asteroid in the inner main asteroid belt. Its distinct spinning-top shape was likely molded by landslides, triggered by rapid rotation about ten million years after its formation. Chemically, Ryugu’s surface material closely resembles that of CI (Ivuna-type) carbonaceous chondrites, known for their primitive compositions. The high porosity of Ryugu particles hints at a past presence of ice. Moreover, the plentiful carbonates, combined with the limited presence of high-temperature inclusions larger than 30 μm, suggest that Ryugu’s parent body originated in the outer Solar System, likely beyond the Saturn orbit. Within a few million years following the formation of the Solar System, gravitational interactions with giant planets may have scattered this parent body to the inner main asteroid belt. The decay heat from the short-lived radionuclide, 26Al, then facilitated aqueous alteration of the parent body and led to the genesis of diverse organic compounds. Many low-albedo asteroids in the main belt share spectra similarities with Ryugu. This implies that the structural water in phyllosilicates and organic matter could have been transported to the early Earth through dynamical and collisional evolution of these objects.

Article

Condensation Calculations in Planetary Science and Cosmochemistry  

Denton S. Ebel

The Sun’s chemical and isotopic composition records the composition of the solar nebula from which the planets formed. If a piece of the Sun is cooled to 1,000 K at 1 mbar total pressure, a mineral assemblage is produced that is consistent with the minerals found in the least equilibrated (most chemically heterogeneous), oldest, and compositionally Sunlike (chondritic), hence most “primitive,” meteorites. This is an equilibrium or fractional condensation experiment. The result can be simulated by calculations using equations of state for hundreds of gaseous molecules, condensed mineral solids, and silicate liquids, the products of a century of experimental measurements and recent theoretical studies. Such calculations have revolutionized our understanding of the chemistry of the cosmos. The mid-20th century realization that meteorites are fossil records of the early solar system made chemistry central to understanding the origin of the Earth, Moon, and other bodies. Thus “condensation,” more generally the distribution of elements and isotopes between vapor and condensed solids and/or liquids at or approaching chemical equilibrium, came to deeply inform discussion of how meteoritic and cometary compositions bear on the origins of atmospheres and oceans and the differences in composition among the planets. This expansion of thinking has had profound effects upon our thinking about the origin and evolution of Earth and the other worlds of our solar system. Condensation calculations have also been more broadly applied to protoplanetary disks around young stars, to the mineral “rain” of mineral grains expected to form in cool dwarf star atmospheres, to the expanding circumstellar envelopes of giant stars, to the vapor plumes expected to form in giant planetary impacts, and to the chemically and isotopically distinct “shells” computed and observed to exist in supernovae. The beauty of equilibrium condensation calculations is that the distribution of elements between gaseous molecules, solids, and liquids is fixed by temperature, total pressure, and the overall elemental composition of the system. As with all sophisticated calculations, there are inherent caveats, subtleties, and computational difficulties. In particular, local equilibrium chemistry has yet to be consistently integrated into gridded, dynamical astrophysical simulations so that effects like the blocking of light and heat by grains (opacity), absorption and re-emission of light by grains (radiative transfer), and buffering of heat by grain evaporation/condensation are fed back into the physics at each node or instance of a gridded calculation over time. A deeper integration of thermochemical computations of chemistry with physical models makes the prospect of a general protoplanetary disk model as hopeful in the 2020s as a general circulation model for global climate may have been in the early 1970s.

Article

Detection and Characterization Methods of Exoplanets  

Nuno C. Santos, Susana C.C. Barros, Olivier D.S. Demangeon, and João P. Faria

Is the Solar System unique, or are planets ubiquitous in the universe? The answer to this long-standing question implies the understanding of planet formation, but perhaps more relevant, the observational assessment of the existence of other worlds and their frequency in the galaxy. The detection of planets orbiting other suns has always been a challenging task. Fortunately, technological progress together with significant development in data reduction and analysis processes allowed astronomers to finally succeed. The methods used so far are mostly based on indirect approaches, able to detect the influence of the planets on the stellar motion (dynamical methods) or the planet’s shadow as it crosses the stellar disk (transit method). For a growing number of favorable cases, direct imaging has also been successful. The combination of different methods also allowed probing planet interiors, composition, temperature, atmospheres, and orbital architecture. Overall, one can confidently state that planets are common around solar-type stars, low mass planets being the most frequent among them. Despite all the progress, the discovery and characterization of temperate Earth-like worlds, similar to the Earth in both mass and composition and thus potential islands of life in the universe, is still a challenging task. Their low amplitude signals are difficult to detect and are often submerged by the noise produced by different instrumentation sources and astrophysical processes. However, the dawn of a new generation of ground and space-based instruments and missions is promising a new era in this domain.

Article

Element Partitioning (Mineral-Melt, Metal-/Sulfide-Silicate) in Planetary Sciences  

Brandon Mahan

Element partitioning—at its most basic—is the distribution of an element of interest between two constituent phases as a function of some process. Major constituent elements generally affect the thermodynamic environment (chemical equilibrium) and therefore trace element partitioning is often considered, as trace elements are present in minute quantities and their equilibrium exchange reactions do not impart significant changes to the larger system. Trace elements are responsive to thermodynamic conditions, and thus they act as passive tracers of chemical reactions without appreciably influencing the bulk reactions themselves. In planetary sciences, the phase pairs typically considered are mineral-melt, metal-silicate, and sulfide-silicate, owing largely to the ubiquity of their coexistence in planetary materials across scales and context, from the micrometer-sized components of meteorites up to the size of planets (thousands of kilometers). It is common to speak of trace elements in terms of their tendency toward forming metallic, sulfidic, or oxide phases, and the terms “siderophile,” “chalcophile,” and “lithophile” (respectively) are used to define these tendencies under what is known as the Goldschmidt Classification scheme. The metric of an element’s tendency to concentrate into one phase relative to another is expressed as the ratio of its concentration (as a weight or molar fraction) in one phase over another, where convention dictates the reference frame as solid over liquid, and metal or sulfide over silicate; this mathematical term is the element’s partition coefficient, or distribution coefficient, between the two respective phases, D M Phase B Phase A (where M is the element of interest, most often reported as molar fraction), or simply D M . In general, trace elements obey Henry’s Law, where the element’s activity and concentration are linearly proportional. Practically speaking, this means that the element is sufficiently dilute in the system such that its atoms interact negligibly with one another compared to their interactions with major element phases, and thus the trace element’s partition coefficient in most settings is not appreciably affected by its concentration. The radius and charge of an element’s ionized species (its ionic radius and valence state)—in relation to either the major element ion for which it is substituting or the lattice site vacancy or interstitial space it is filling—generally determine the likelihood of trace element substitution or vacancy/interstitial fill (along with the net charge of the lattice space). The key energy consideration that underlies an element’s partitioning is the Gibbs free energy of reaction between the phases involved. Gibbs free energy is the change in internal energy associated with a chemical reaction (at a given temperature and pressure) that can be used to do work, and is denoted as Δ G rxn . Reactions with negative Δ G rxn values are spontaneous, and the magnitude of this negative value for a given phase, for example, a metal oxide, denotes the relative affinity of the metal toward forming oxides. That is to say, an element with a highly negative Δ G rxn for its oxide species at relevant pressure-temperature conditions will tend to be found in oxide and silicate minerals, that is, it will be lithophile (and vice versa for siderophile elements). Trace element partitioning systematics in mineral-melt and metal-/sulfide-silicate systems have boundless applications in planetary science. A growing collective understanding of the partition coefficients of elements has been built on decades of physical chemistry, deterministic theory, petrology, experimental petrology, and natural observations. Leveraging this immense intellectual, technical, and methodological foundation, modern trace element partitioning research is particularly aimed at constraining the evolution of plate tectonics on Earth (conditions and timing of onset), understanding the formation history of planetary materials such as chondrite meteorites and their constituents (e.g., chondrules), and de-convolving the multiply operating processes at play during the accretion and differentiation of Earth and other terrestrial planets.

Article

Experimental Studies of Condensation in the Solar Nebula and Circumstellar Outflows  

Aki Takigawa

Characteristics of minerals in primitive chondrites, micrometeorites, and interplanetary dust particles (IDPs) such as chemical composition, crystal structures, textures, size, and shape indicate that solids and gases hardly reached equilibrium in the solar nebula. They may record a part of physicochemical conditions where dust formed or altered in the solar nebula or their parent bodies. Even the presence or absence of the minerals constrain the conditions in which they can survive or disappear. On the basis of the thermodynamical equilibrium models, which succeeded in predicting minerals stable in each temperature and pressure condition, laboratory experiments have played crucial roles in understanding kinetically controlled processes, such as evaporation, condensation (nucleation and growth), and chemical reactions, and deducing formation and alteration conditions in the solar nebula and their parent bodies from observations of primitive extraterrestrial materials. In laboratories, it is impossible to reproduce physicochemical conditions in the solar nebula mainly because of the limited laboratory timescales. Therefore, each experimental work focuses on a single process or reproduction of certain mineralogical characteristics observed in meteorites and IDPs. The kinetically controlled reactions of abundant minerals such as forsterite were examined by laboratory experiments of evaporation, gas–solid reaction, and condensation. Evaporation and condensation coefficients were determined based on the Hertz–Knudsen equation and nucleation theory, which are important parameters controlling timescales of reaction, temperature dependences, grain size or reaction volume, and chemical fractionation occurring in a limited timescale. In addition, chemical compositions and textures of amorphous metastable materials were systematically investigated by condensation experiments of nanoparticles. Various types of laboratory experiments and theoretical studies are complementary to each other for understanding the mineralogy of extraterrestrial materials and dust formation and evolution in the solar nebula.

Article

Formation, Composition, and Evolution of the Earth’s Core  

Francis Nimmo

The Earth’s core formed by multiple collisions with differentiated protoplanets. The Hf-W (hafnium-tungsten) isotopic system reveals that these collisions took place over a timescale of tens of megayears (Myr), in agreement with accretion simulations. The degree to which the iron and silicates re-equilibrated during each collision is uncertain and affects the apparent core age derived from tungsten isotopic measurements. Seismological data reveal that the core contains light elements in addition to Fe-Ni, and the outer core is more enriched in such elements than the inner core. Because O is excluded efficiently from solid iron, O is almost certainly an important constituent of the outer core. The identity of other elements is less certain, despite intensive measurements of their effects on seismic velocities, densities, and partitioning behavior at appropriate pressures and temperatures. Si and O are very likely present, with perhaps some S; C and H are less likely. Si and Mg may have exsolved over time, potentially helping to drive the geodynamo and producing a low-density layer at the top of the core. Radioactive elements (U, Th, K) are unlikely to be present in important concentrations. The cooling of the core is controlled by the mantle’s ability to extract heat. The geodynamo has existed for at least 3.5 gigayears (Gyr), placing a lower bound on the heat flow out of the core. Because the thermal conductivity of the core is uncertain by a factor of ~3, the lower bound on this heat flow is similarly uncertain. Once the inner core started to crystallize, additional sources of energy were available to power the geodynamo. Inner core crystallization likely started in the time range 0.5 to 2.0 Gyr Before Present (BP); paleomagnetic arguments have been advanced for inner core growth starting at several different epochs within this time range.

Article

The Formation of the Martian Moons  

Pascal Rosenblatt, Ryuki Hyodo, Francesco Pignatale, Antony Trinh, Sebastien Charnoz, Kevin Dunseath, Mariko Dunseath-Terao, and Hidenori Genda

The origin of the natural satellites or moons of the solar system is as challenging to unravel as the formation of the planets. Before the start of the space probe exploration era, this topic of planetary science was restricted to telescopic observations, which limited the possibility of testing different formation scenarios. This era has considerably boosted this topic of research, particularly after the Apollo missions returned samples from the Moon’s surface to Earth. Observations from subsequent deep space missions such as Viking 1 and 2 Orbiters, Voyager 1 and 2, Phobos-2, Galileo, Cassini-Huygens, and the most recent Mars orbiters such as Mars Express, as well as from the Hubble space telescope, have served to intensify research in this area. Each moon system has its own specificities, with different origins and histories. It is widely accepted that the Earth’s Moon formed after a giant collision between the proto-Earth and a body similar in size to Mars. The Galilean moons of Jupiter, on the other hand, appear to have formed by accretion in a circum-Jovian disk, while smaller, irregularly shaped satellites were probably captured by the giant planet. The small and medium-sized Saturnian moons may have formed from the rings encircling the planet. Among the terrestrial planets, Mercury and Venus have no moons, the Earth has a single large moon, and Mars has two very small satellites. This raises some challenging questions: What processes can lead to moon formation around terrestrial planets and what parameters determine the possible outcomes, such as the number and size of moons? The answer to such fundamental questions necessarily entails a thorough understanding of the formation of the Martian system and may have relevance to the possible existence of (exo)moons orbiting exoplanets. The formation of such exomoons is of great importance as they could influence conditions for habitability or for maintaining life over long periods of time on the surface of Earth-like exoplanets, for example by limiting the variations of the orientation of the planet’s rotation axis and thus preventing frequent changes of its climate. Our current knowledge concerning the origin of Phobos and Deimos has been acquired from observational data as well as theoretical work. Early observations led to the idea that the two satellites were captured asteroids but this created difficulties in reconciling the current orbits of Phobos and Deimos with those of captured bodies, hence suggesting the need for an alternative theory. A giant-impact scenario provides a description of how moons similar to Phobos and Deimos can be formed in orbits similar to those observed today. This scenario also restricts the range of possible composition of the two moons, providing a motivation for future missions that aim for the first time to bring material from the Martian system back to Earth.

Article

Iron Meteorites: Composition, Age, and Origin  

Edward R. D. Scott

Iron meteorites are thought to be samples of metallic cores and pools that formed in diverse small planetary bodies. Their great diversity offers remarkable insights into the formation of asteroids and the early history of the solar system. The chemical compositions of iron meteorites generally match those predicted from experimental and theoretical considerations of melting in small bodies. These bodies, called planetesimals, were composed of mixtures of grains of silicates, metallic iron-nickel, and iron sulfide with compositions and proportions like those in chondrite meteorites. Melting in planetesimals caused dense metal to sink through silicate so that metallic cores formed. A typical iron meteorite contains 5–10% nickel, ~0.5% cobalt, 0.1–0.5% phosphorus, 0.1–1% sulfur and over 20 other elements in trace amounts. A few percent of iron meteorites also contain silicate inclusions, which should have readily separated from molten metal because of their buoyancy. They provide important evidence for impacts between molten or partly molten planetesimals. The major heat source for melting planetesimals was the radioactive isotope 26Al, which has a half-life of 0.7 million years. However, a few iron meteorites probably formed by impact melting of chondritic material. Impact processes were also important in the creation of many iron meteorites when planetesimals were molten. Chemical analysis show that most iron meteorites can be divided into 14 groups: about 15% appear to come from another 50 or more poorly sampled parent bodies. Chemical variations within all but three groups are consistent with fractional crystallization of molten cores of planetesimals. The other three groups are richer in silicates and probably come from pools of molten metal in chondritic bodies. Isotopic analysis provides formation ages for iron meteorites and clues to their provenance. Isotopic dating suggests that the parent bodies of iron meteorites formed before those of chondrites, and some irons appear to be the oldest known meteorites. Their unexpected antiquity is consistent with 26Al heating of planetesimals. Bodies that accreted more than ~2 million years after the oldest known solids (refractory inclusions in chondrites) should not have contained enough 26Al to melt. Isotopic analysis also shows that iron meteorites, like other meteorite types, display small anomalies due to pre-solar grains that were not homogenized in the solar nebula (or protoplanetary disk). Although iron meteorites are derived from asteroids, their isotopic anomalies provide the best clues that some come from planetesimals that did not form in the asteroid belt. Some may have formed beyond Jupiter; others show isotopic similarities to Earth and may have formed in the neighborhood of the terrestrial planets. Iron meteorites therefore contain important clues to the formation of planetesimals that melted and they also provide constraints on theories for the formation of planets and asteroids.

Article

Isotopic Dating  

Yuri Amelin

Isotopic dating is the measurement of time using the decay of radioactive isotopes and accumulation of decay products at a known rate. With isotopic chronometers, we determine the time of the processes that fractionate parent and daughter elements. Modern isotopic dating can resolve time intervals of ~1 million years over the entire lifespan of the Earth and the Solar System, and has even higher time resolution for the earliest and the most recent geological history. Using isotopic dates, we can build a unified scale of time for the evolution of Earth, the Moon, Mars, and asteroids, and expand it as samples from other planets become available for study. Modern geochronology and cosmochronology rely on isotopic dating methods that are based on decay of very long-lived radionuclides: 238U, 235U, 40K, 87Rb, 147Sm, etc. to stable radiogenic nuclides 206Pb, 207Pb, 40K, 40Ca, 87Sr, 143Nd, and moderately long-lived radionuclides: 26Al, 53Mn, 146Sm, 182Hf, to stable nuclides 26Mg, 53Cr, 142Nd, 182W. The diversity of physical and chemical properties of parent (radioactive) and daughter (radiogenic) nuclides, their geochemical and cosmochemical affinities, and the resulting diversity of processes that fractionate parent and daughter elements, allows direct isotopic dating of a vast range of earth and planetary processes. These processes include, but are not limited to evaporation and condensation, precipitation and dissolution, magmatism, metamorphism, metasomatism, sedimentation and diagenesis, ore formation, formation of planetary cores, crystallisation of magma oceans, and the timing of major impact events. Processes that cannot be dated directly, such as planetary accretion, can be bracketed between two datable events.

Article

Meteorite Mineralogy  

Alan E. Rubin and Chi Ma

Meteorites are rocks from outer space that reach the Earth; more than 60,000 have been collected. They are derived mainly from asteroids; a few hundred each are from the Moon and Mars; some micrometeorites derive from comets. By mid 2020, about 470 minerals had been identified in meteorites. In addition to having characteristic petrologic and geochemical properties, each meteorite group has a distinctive set of pre-terrestrial minerals that reflect the myriad processes that the meteorites and their components experienced. These processes include condensation in gaseous envelopes around evolved stars, crystallization in chondrule melts, crystallization in metallic cores, parent-body aqueous alteration, and shock metamorphism. Chondrites are the most abundant meteorites; the major components within them include chondrules, refractory inclusions, opaque assemblages, and fine-grained silicate-rich matrix material. The least-metamorphosed chondrites preserve minerals inherited from the solar nebula such as olivine, enstatite, metallic Fe-Ni, and refractory phases. Other minerals in chondrites formed on their parent asteroids during thermal metamorphism (such as chromite, plagioclase and phosphate), aqueous alteration (such as magnetite and phyllosilicates) and shock metamorphism (such as ringwoodite and majorite). Differentiated meteorites contain minerals formed by crystallization from magmas; these phases include olivine, orthopyroxene, Ca-plagioclase, Ca-pyroxene, metallic Fe-Ni and sulfide. Meteorites also contain minerals formed during passage through the Earth’s atmosphere and via terrestrial weathering after reaching the surface. Whereas some minerals form only by a single process (e.g., by high-pressure shock metamorphism or terrestrial weathering of a primary phase), other meteoritic minerals can form by several different processes, including condensation, crystallization from melts, thermal metamorphism, and aqueous alteration.

Article

Migration of Low-Mass Planets  

Frédéric S. Masset

Planet migration is the variation over time of a planet’s semimajor axis, leading to either a contraction or an expansion of the orbit. It results from the exchange of energy and angular momentum between the planet and the disk in which it is embedded during its formation and can cause the semimajor axis to change by as much as two orders of magnitude over the disk’s lifetime. The migration of forming protoplanets is an unavoidable process, and it is thought to be a key ingredient for understanding the variety of extrasolar planetary systems. Although migration occurs for protoplanets of all masses, its properties for low-mass planets (those having up to a few Earth masses) differ significantly from those for high-mass planets. The torque that is exerted by the disk on the planet is composed of different contributions. While migration was first thought to be invariably inward, physical processes that are able to halt or even reverse migration were later uncovered, leading to the realization that the migration path of a forming planet has a very sensitive dependence on the underlying disk parameters. There are other processes that go beyond the case of a single planet experiencing smooth migration under the disk’s tide. This is the case of planetary migration in low-viscosity disks, a fashionable research avenue because protoplanetary disks are thought to have very low viscosity, if any, over most of their planet-forming regions. Such a process is generally significantly chaotic and has to be tackled through high-resolution numerical simulations. The migration of several low-mass planets is also is a very fashionable topic, owing to the discovery by the Kepler mission of many multiple extrasolar planetary systems. The orbital properties of these systems suggest that at least some of them have experienced substantial migration. Although there have been many studies to account for the orbital properties of these systems, there is as yet no clear picture of the different processes that shaped them. Finally, some recently unveiled processes could be important for the migration of low-mass planets. One process is aero-resonant migration, in which a swarm of planetesimals subjected to aerodynamic drag push a planet inward when they reach a mean-motion resonance with the planet, while another process is based on so-called thermal torques, which arise when thermal diffusion in the disk is taken into account, or when the planet, heated by accretion, releases heat into the ambient gas.

Article

Nucleosynthetic Isotope Anomalies in Cosmochemistry and Geochemistry  

Katherine Bermingham and Brad Meyer

Nucleosynthetic isotope anomalies provide some of the most informative sample-based constraints on the origin of the Solar System. An isotopic anomaly is a deviation in isotopic ratio relative to a standard that is made from natural terrestrial materials. Nucleosynthetic isotope anomalies are small (i.e., part-per-million scale) stable isotopic anomalies that are found in meteorites and some planetary bodies which are caused by the heterogeneous distribution of stardust in the protoplanetary disk. These subtle isotopic differences provide constraints on the combination of stellar precurors whose stardust comprises some of the matter in the protoplanetary disk. These anomalies also constrain how well stardust was mixed in the disk during accretion. Furthermore, discoveries of subtle nucleosynthetic isotope anomalies in samples from the Earth’s mantle have opened the door to the possibility of using nucleosynthetic isotope anomalies to trace Earth’s precursor material. New insights into the evolution of the nascent Solar System have come from interpreting nucleosynthetic isotope anomalies in the context of numerical stellar nucleosynthetic models and disk evolution models. This research is based on a thus far omnipresent isotopic dichotomy, termed the “NC–CC isotopic dichotomy”, that is recorded in the nucleosynthetic isotope composition of meteorites. This isotopic dichotomy has been interpreted to indicate that within the first few million years of Solar System history, the disk separated into two portions. This separation inhibited material in the presumptive inner Solar System (termed noncarbonaceous reservoir, NC group) from mixing with outer Solar System material (termed carbonaceous chondrite reservoir, CC group). This strict compositional division in the disk may have lasted until giant planet migration, which occurred at the tail end of the disk’s lifetime (<10 Ma of Solar System formation). Despite this application of the NC-CC isotopic dichotomy, fundamental questions remain about what part of Solar System history it preserves and if it can be used to reconstruct the architecture of the nascent Solar System. The applications of nucleosynthetic isotope anomalies in cosmochemistry and the insights these data provide into the evolution of the Solar System and Earth are discussed. The nucleosynthetic isotope anomalies that are recorded in bulk cosmochemical and terrestrial materials are summarized. The likely stellar origins of the presolar grains responsible for the isotopic anomalies on the bulk sample scale are distilled, along with the constraints these data place on the distribution of presolar material in the disk. A review of stellar nucleosynthesis, the formation of the Solar System, the conceptual framework used to interpret nucleosynthetic isotope data, and reported bulk sample nucleosynthetic isotope anomalies is first provided. Following this, a discussion on how nucleosynthetic isotope anomalies are used to constrain the early architecture of the Solar System is presented. To conclude, possible future directions that the scientific community may pursue by applying nucleosynthetic isotope anomalies to questions about terrestrial accretion are presented.

Article

Planet Formation  

Morris Podolak

Modern observational techniques are still not powerful enough to directly view planet formation, and so it is necessary to rely on theory. However, observations do give two important clues to the formation process. The first is that the most primitive form of material in interstellar space exists as a dilute gas. Some of this gas is unstable against gravitational collapse, and begins to contract. Because the angular momentum of the gas is not zero, it contracts along the spin axis, but remains extended in the plane perpendicular to that axis, so that a disk is formed. Viscous processes in the disk carry most of the mass into the center where a star eventually forms. In the process, almost as a by-product, a planetary system is formed as well. The second clue is the time required. Young stars are indeed observed to have gas disks, composed mostly of hydrogen and helium, surrounding them, and observations tell us that these disks dissipate after about 5 to 10 million years. If planets like Jupiter and Saturn, which are very rich in hydrogen and helium, are to form in such a disk, they must accrete their gas within 5 million years of the time of the formation of the disk. Any formation scenario one proposes must produce Jupiter in that time, although the terrestrial planets, which don’t contain significant amounts of hydrogen and helium, could have taken longer to build. Modern estimates for the formation time of the Earth are of the order of 100 million years. To date there are two main candidate theories for producing Jupiter-like planets. The core accretion (CA) scenario supposes that any solid materials in the disk slowly coagulate into protoplanetary cores with progressively larger masses. If the core remains small enough it won’t have a strong enough gravitational force to attract gas from the surrounding disk, and the result will be a terrestrial planet. If the core grows large enough (of the order of ten Earth masses), and the disk has not yet dissipated, then the planetary embryo can attract gas from the surrounding disk and grow to be a gas giant. If the disk dissipates before the process is complete, the result will be an object like Uranus or Neptune, which has a small, but significant, complement of hydrogen and helium. The main question is whether the protoplanetary core can grow large enough before the disk dissipates. A second scenario is the disk instability (DI) scenario. This scenario posits that the disk itself is unstable and tends to develop regions of higher than normal density. Such regions collapse under their own gravity to form Jupiter-mass protoplanets. In the DI scenario a Jupiter-mass clump of gas can form—in several hundred years which will eventually contract into a gas giant planet. The difficulty here is to bring the disk to a condition where such instabilities will form. Now that we have discovered nearly 3000 planetary systems, there will be numerous examples against which to test these scenarios.

Article

Planet Formation Through Gravitational Instabilities  

Ken Rice

It is now widely accepted that planets form in discs around young stars, with the most widely accepted planet formation scenario being a bottom-up process typically referred to as “core accretion.” The basic process involves a core growing through the accumulation of solids and, if it gets massive enough while there is still gas present in the disc, undergoing a runaway gas accretion phase to form a Jupiter-like gas giant. However, early models of this process suggested that the formation timescale for a Jupiter-like gas giant exceeded the lifetime of the gas disc, suggesting that massive, gas giant planets form via some alternative process. One possibility is that they form via direct gravitational collapse. During the earliest stages of star formation, the disc around a young star can have a mass that is comparable to that of the central protostar and can be susceptible to the growth of a gravitational instability. One outcome of such an instability is that the disc fragments into bound objects that can then contract to become gas giant planets. This would happen very early in the star formation process and is very rapid, overcoming the timescale problem. Subsequent work has, however, both illustrated that core accretion may operate on timescales shorter than disc lifetimes and that disc fragmentation is very unlikely to operate in the inner parts of planet-forming discs. Hence, it is very unlikely that disc fragmentation plays a role in the direct formation of close-in exoplanets. However, disc fragmentation may operate at large orbital radii and is expected to preferentially form either massive gas giant planets or brown dwarfs. Therefore, it is intriguing that exactly such objects are starting to be directly imaged at orbital radii where disc fragmentation may operate. Additionally, even if a self-gravitating phase doesn’t play a direct role in the formation of gas giant planets, it may play an indirect role in the planet formation process. The spiral density waves that develop due to the gravitational instability can act to enhance the local density of solids, potentially accelerating their collisional growth or leading to the direct gravitational collapse of the solid component of the disc. This could then provide some of the building blocks for planets that later form via core accretion.

Article

Saturn’s Rings  

Larry W. Esposito

Saturn’s rings are not only a beautiful and enduring symbol of space, but astronomers’ best local laboratory for studying phenomena in thin cosmic disks like those where planets formed. All the giant planets have ring systems. Saturn’s are the biggest and brightest. Saturn’s rings are made of innumerable icy particles, ranging from the size of dust to that of football stadiums. Galileo discovered Saturn’s rings with his newly invented telescope, but they were not explained until Huygens described them as thin, flat disks surrounding the planet. In the space age, rings were found around the other giant planets in our solar system. Rings have been seen around asteroids and likely exist around exoplanets. Many of the ring structures seen are created by gravity from Saturn’s moons. Rings show both ongoing aggregation and disaggregation. After decades of study from space and by theoretical analysis, some puzzles still remain unexplained. There is evidence for youthful rings from Cassini results, but no good theory to explain their recent origin. A future Saturn Ring Observer mission would be able to determine the direct connections between the individual ring physical properties and the origin and evolution of larger structures.

Article

Solar Elemental Abundances  

Katharina Lodders

Solar elemental abundances, or solar system elemental abundances, refer to the complement of chemical elements in the entire Solar System. The Sun contains more than 99% of the mass in the solar system and therefore the composition of the Sun is a good proxy for the composition of the overall solar system. The solar system composition can be taken as the overall composition of the molecular cloud within the interstellar medium from which the solar system formed 4.567 billion years ago. Active research areas in astronomy and cosmochemistry model collapse of a molecular cloud of solar composition into a star with a planetary system and the physical and chemical fractionation of the elements during planetary formation and differentiation. The solar system composition is the initial composition from which all solar system objects (the Sun, terrestrial planets, gas giant planets, planetary satellites and moons, asteroids, Kuiper-belt objects, and comets) were derived. Other dwarf stars (with hydrostatic hydrogen-burning in their cores) like the Sun (type G2V dwarf star) within the solar neighborhood have compositions similar to the Sun and the solar system composition. In general, differential comparisons of stellar compositions provide insights about stellar evolution as functions of stellar mass and age and ongoing nucleosynthesis but also about galactic chemical evolution when elemental compositions of stellar populations across the Milky Way Galaxy is considered. Comparisons to solar composition can reveal element destruction (e.g., Li) in the Sun and in other dwarf stars. The comparisons also show element production of, for example, C, N, O, and the heavy elements made by the s-process in low to intermediate mass stars (3–7 solar masses) after these evolved from their dwarf-star stage into red giant stars (where hydrogen and helium burning can occur in shells around their cores). The solar system abundances are and have been a critical test composition for nucleosynthesis models and models of galactic chemical evolution, which aim ultimately to track the production of the elements heavier than hydrogen and helium in the generation of stars that came forth after the Big Bang 13.4 billion years ago.

Article

Steam Atmospheres and Magma Oceans on Planets  

Keiko Hamano

A magma ocean is a global layer of partially or fully molten rocks. Significant melting of terrestrial planets likely occurs due to heat release during planetary accretion, such as decay heat of short-lived radionuclides, impact energy released by continuous planetesimal accretion, and energetic impacts among planetary-sized bodies (giant impacts). Over a magma ocean, all water, which is released upon impact or degassed from the interior, exists as superheated vapor, forming a water-dominated, steam atmosphere. A magma ocean extending to the surface is expected to interact with the overlying steam atmosphere through material and heat exchange. Impact degassing of water starts when the size of a planetary body becomes larger than Earth’s moon or Mars. The degassed water could build up and form a steam atmosphere on protoplanets growing by planetesimal accretion. The atmosphere has a role in preventing accretion energy supplied by planetesimals from escaping, leading to the formation of a magma ocean. Once a magma ocean forms, part of the steam atmosphere would start to dissolve into the surface magma due to the high solubility of water into silicate melt. Theoretical studies indicated that as long as the magma ocean is present, a negative feedback loop can operate to regulate the amount of the steam atmosphere and to stabilize the surface temperature so that a radiative energy balance is achieved. Protoplanets can also accrete the surrounding H 2 -rich disk gas. Water could be produced by oxidation of H 2 by ferrous iron in the magma. The atmosphere and water on protoplanets could be a mixture of outgassed and disk-gas components. Planets formed by giant impact would experience a global melting on a short timescale. A steam atmosphere could grow by later outgassing from the interior. Its thermal blanketing and greenhouse effects are of great importance in controlling the cooling rate of the magma ocean. Due to the presence of a runaway greenhouse threshold, the crystallization timescale and water budget of terrestrial planets can depend on the orbital distance from the host star. The terrestrial planets in our solar system essentially have no direct record of their earliest history, whereas observations of young terrestrial exoplanets may provide us some insight into what early terrestrial planets and their atmosphere are like. Evolution of protoplanets in the framework of pebble accretion remains unexplored.

Article

The Formation and Evolution of the Solar System  

Mikhail Marov

The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula’s inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.

Article

Tidal Interactions Between Planets and Host Stars  

Gordon Ogilvie

Hundreds of planets are already known to have orbits only a few times wider than the stars that host them. The tidal interaction between a planet and its host star is one of the main agents shaping the observed distributions of properties of these systems. Tidal dissipation in the planet tends make the orbit circular, as well as synchronizing and aligning the planet’s spin with the orbit, and can significantly heat the planet, potentially affecting its size and structure. Dissipation in the star typically leads to inward orbital migration of the planet, accelerating the star’s rotation, and in some cases destroying the planet. Some essential features of tidal evolution can be understood from the basic principles that angular momentum and energy are exchanged between spin and orbit by means of a gravitational field and that energy is dissipated. For example, most short-period exoplanetary systems have too little angular momentum to reach a tidal equilibrium state. Theoretical studies aim to explain tidal dissipation quantitatively by solving the equations of fluid and solid mechanics in stars and planets undergoing periodic tidal forcing. The equilibrium tide is a nearly hydrostatic bulge that is carried around the body by a large-scale flow, which can be damped by convection or hydrodynamic instability, or by viscoelastic dissipation in solid regions of planets. The dynamical tide is an additional component that generally takes the form of internal waves restored by Coriolis and buoyancy forces in a rotating and stratified fluid body. It can lead to significant dissipation if the waves are amplified by resonance, are efficiently damped when they attain a very short wavelength, or break because they exceed a critical amplitude. Thermal tides are excited in a planetary atmosphere by the variable heating by the star’s radiation. They can oppose gravitational tides and prevent tidal locking, with consequences for the climate and habitability of the planet. Ongoing observations of transiting exoplanets provide information on the orbital periods and eccentricities as well as the obliquity (spin–orbit misalignment) of the star and the size of the planet. These data reveal several tidal processes at work and provide constraints on the efficiency of tidal dissipation in a variety of stars and planets.