Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, PLANETARY SCIENCE ( (c) Oxford University Press USA, 2020. All Rights Reserved. Personal use only; commercial use is strictly prohibited (for details see Privacy Policy and Legal Notice).

date: 27 October 2020

The Magnetosphere of Saturn

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article.

Saturn’s magnetosphere is the region of space surrounding Saturn that is controlled by the planetary magnetic field. Saturn’s magnetic field is aligned to within 1 degree of the rotation axis and rotates with a period of ~10.7 h. The magnetosphere is compressed on the dayside by the impinging solar wind, and stretched into a long magnetotail on the nightside. Its surface, the magnetopause, is located where the internal and external plasma and magnetic pressures balance. As a result of the pressure distributions, the magnetopause has a bimodal distribution of standoff distance at the sub-solar point and is flattened over the poles relative to the equator.

Radiation belts composed of trapped energetic electrons and protons are present in the inner magnetosphere. Their intensity is limited by the moons and rings that can absorb the energetic particles. The icy moons and rings, particularly the cryovolcanic moon Enceladus, are the main sources of mass in the form of water. When the water molecules are ionized they are confined to the equatorial plane by the rapidly rotating magnetic field. This mass-loading acts to distend the magnetic field lines from a dipolar configuration into a radially stretched magnetodisk, with an associated eastward-directed current. In situ measurements of plasma velocity indicate it generally lags behind the planetary rotation, introducing an azimuthal component of the magnetic field. Despite the alignment of the magnetic and rotation axes, so-called planetary period oscillations are ubiquitous in field and plasma measurements in the magnetosphere.

Radial transport of plasma involves the centrifugal interchange instability in the inner magnetosphere and magnetic reconnection in the middle and outer magnetosphere. This allows mass from the moons and rings to be lost from the system. The outermost regions of the magnetosphere are also influenced by the surrounding solar wind through magnetic reconnection and viscous interactions. Acceleration via reconnection or other processes, or scattering of plasma into the atmosphere leads to auroral emissions detected at radio, infrared, visible, and ultraviolet wavelengths.