Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Psychology. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 24 January 2021

Multilevel Modeling Methodslocked

  • Vicente González-RomáVicente González-RomáUniversitat de Valencia, Research Institute in Personnel Psychology, Organizational Development and Quality of Working Life
  •  and Ana HernándezAna HernándezUniversitat de Valencia, Research Institute in Personnel Psychology, Organizational Development and Quality of Working Life

Summary

Human behavior takes place in different contexts (e.g., organizations, schools, families, sports teams, and communities) whose properties (e.g., climate, culture, cohesion, leadership, communication networks, and structure) influence human behavior. To estimate this influence, researchers need appropriate methods that avoid the problems associated with the application of standard Ordinary Least Square (OLS) regression.

Multilevel modeling methods offer researchers a way to estimate the aforementioned influence. These methods take into account that the variables involved reside at different levels. For instance, in the relationship between work unit climate and employee job satisfaction, the former variable resides at the work unit level (level 2) whereas the latter resides at the individual one (level 1). Moreover, multilevel modeling methods also take into account that the data analyzed to estimate this type of relationships have a nested structure in which individuals (e.g., employees) are nested into collectives (e.g., work units). Finally, these methods decompose variance into between-group and within-group components and allow researchers to model variability at the between and within levels.

Specifically, multilevel modeling methods allow researchers to test hypotheses that involve, among others: 1. A relationship between a higher-level predictor (e.g., work unit climate) and a lower-level outcome (e.g., employee job satisfaction); a so-called “direct cross-level effect”, and 2. An influence of a higher-level moderator (e.g., work unit climate) on an individual level relationship (e.g., the relationship between employee job stress and job satisfaction); a so-called “cross-level interaction”. Multilevel modeling methods can also be used to test more complex models involving mediation (e.g., 2-2-1, 2-1-1, or 1-1-1 models, depending on whether the antecedent and the mediator are level 1 or level 2 variables) and moderated mediation. We show how to test these models by presenting examples with real data and the corresponding SPSS syntax that readers can use to practice.

You do not currently have access to this article

Login

Please login to access the full content.

Subscribe

Access to the full content requires a subscription