Show Summary Details

Page of

Printed from Oxford Research Encyclopedias, Psychology. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 27 February 2021

Mixture Modeling for Lifespan Developmental Researchlocked

  • Alexandre J.S. MorinAlexandre J.S. MorinDepartment of Psychology, Concordia University
  •  and David LitalienDavid LitalienFaculty of Education Sciences, Université Laval


As part of the Generalized Structural Equation Modeling framework, mixture models are person-centered analyses seeking to identify distinct subpopulations, or profiles, of participants differing quantitatively and qualitatively from one another on a configuration of indicators and/or relations among these indicators. Mixture models are typological (resulting in a classification system), probabilistic (each participant having a probability of membership into all profiles based on prototypical similarity), and exploratory (the optimal model is typically selected based on a comparison of alternative specifications) in nature, and can take different forms. Latent profile analyses seek to identify subpopulations of participants differing from one another on a configuration of indicators and can be extended to factor mixture analyses allowing for the incorporation of latent factors to the model. In contrast, mixture regression analyses seek to identify subpopulations of participants’ differing from one another in terms of relations among profile indicators. These analyses can be extended to the multiple-group and/or longitudinal analyses, allowing researchers to conduct tests of profile similarity across different samples of participants or time points, and latent transition analyses can be used to assess probabilities of profiles transition over time among a sample of participants (i.e., within person stability and change in profile membership). Finally, growth mixture analyses are built from latent curve models and seek to identify subpopulations of participants following quantitatively and qualitatively distinct trajectories over time. All of these models can accommodate covariates, used either as predictors, correlates, or outcomes, and can even be extended to tests of mediation and moderation.

You do not currently have access to this article


Please login to access the full content.


Access to the full content requires a subscription