1-10 of 10 Results  for:

  • Cognitive Psychology/Neuroscience x
  • Neuropsychology x
Clear all

Article

Holly Bridge

The sensation of vision arises from the detection of photons of light at the eye, but in order to produce the percept of the world, extensive regions of the brain are required to process the visual information. The majority of information entering the brain via the optic nerve from the eye projects via the lateral geniculate nucleus (LGN) of the thalamus to the primary visual cortex, the largest visual area, having been reorganized such that one side of the brain represents one side of the world. Damage to the primary visual cortex in one hemisphere therefore leads to a loss of conscious vision on the opposite side of the world, known as hemianopia. Despite this cortical blindness, many patients are still able to detect visual stimuli that are presented in the blind region if forced to guess whether a stimulus is present or absent. This is known as “blindsight.” For patients to gain any information (conscious or unconscious) about the visual world, the input from the eye must be processed by the brain. Indeed, there is considerable evidence from functional brain imaging that several visual areas continue to respond to visual stimuli presented within the blind region, even when the patient is unaware of the stimulus. Furthermore, the use of diffusion imaging allows the microstructure of white matter pathways within the visual system to be examined to see whether they are damaged or intact. By comparing patients who have hemianopia with and without blindsight it is possible to determine the pathways that are linked to blindsight function. Through understanding the brain areas and pathways that underlie blindsight in humans and non-human primates, the aim is to use modern neuroscience to guide rehabilitation programs for use after stroke.

Article

Gianluca Susi, Jaisalmer de Frutos-Lucas, Guiomar Niso, Su Miao Ye-Chen, Luis Antón Toro, Brenda Nadia Chino Vilca, and Fernando Maestú

Oscillatory activity present in brain signals reflects the underlying time-varying electrical discharges within and between ensembles of neurons. Among the variety of non-invasive techniques available for measuring of the brain’s oscillatory activity, magnetoencephalography (MEG) presents a remarkable combination of spatial and temporal resolution, and can be used in resting-state or task-based studies, depending on the goals of the experiment. Two important kinds of analysis can be carried out with the MEG signal: spectral a. and functional connectivity (FC) a. While the former provides information on the distribution of the frequency content within distinct brain areas, FC tells us about the dependence or interaction between the signals stemming from two (or among many) different brain areas. The large frequency range combined with the good resolution offered by MEG makes MEG-based spectral and FC analyses able to highlight distinct patterns of neurophysiological alterations during the aging process in both healthy and pathological conditions. Since disruption in spectral content and functional interactions between brain areas could be accounted for by early neuropathological changes, MEG could represent a useful tool to unveil neurobiological mechanisms related to the cognitive decline observed during aging, particularly suitable for the detection of functional alterations, and then for the discovery of potential biomarkers in case of pathology. The aging process is characterized by alterations in the spectral content across the brain. At the network level, FC studies reveal that older adults experience a series of changes that make them more vulnerable to cognitive interferences. While special attention has been dedicated to the study of pathological conditions (in particular, mild cognitive impairment and Alzheimer’s disease), the lack of studies addressing the features of FC in healthy aging is noteworthy. This area of research calls for future attention because it is able to set the baseline from which to draw comparisons with different pathological conditions.

Article

Brain organization can be measured across multiple spatial and temporal scales where each scale affects the other in the emergent functions that are known as cognition. As a complex adaptive system, the interplay of these scales in the brain represents the information that ultimately supports what one thinks and does. The dynamics of these multiscale operations can be quantified with measures of complexity, which are sensitive to the balance between information that is coded in local cell populations and that is captured in the network interactions between populations. This local versus global balance has its foundation in the structural connectivity of the brain, which is then realized through the dynamics of cell populations and their ensuing interactions with other populations. Considering brain function and cognition in this way enables a different perspective on the changes in cognitive function in aging. Changes in brain signal complexity from childhood to adulthood were assessed in two independent studies. Both showed that maturation is accompanied by an overall increase in signal complexity, which also correlated with more stable and accurate cognitive performance. There was some suggestion that the maximal change occurs in medial posterior cortical areas, which have been considered “network hubs” of the brain. In extending to the study of healthy aging, a scale-dependent change in brain complexity was observed across three independent studies. Healthy aging brings a shift in local and global balance, where more information is coded in local dynamics and less in global interactions. This balance is associated with better cognitive performance and, interestingly, in a more active lifestyle. It also seems that the lack of this shift in local and global balance is predictive of worse cognitive performance and potentially predictive of additional decline indicative of dementia.

Article

David J. Madden and Zachary A. Monge

Age-related decline occurs in several aspects of fluid, speed-dependent cognition, particularly those related to attention. Empirical research on visual attention has determined that attention-related effects occur across a range of information processing components, including the sensory registration of features, selection of information from working memory, controlling motor responses, and coordinating multiple perceptual and cognitive tasks. Thus, attention is a multifaceted construct that is relevant at virtually all stages of object identification. A fundamental theme of attentional functioning is the interaction between the bottom-up salience of visual features and top-down allocation of processing based on the observer’s goals. An underlying age-related slowing is prominent throughout visual processing stages, which in turn contributes to age-related decline in some aspects of attention, such as the inhibition of irrelevant information and the coordination of multiple tasks. However, some age-related preservation of attentional functioning is also evident, particularly the top-down allocation of attention. Neuroimaging research has identified networks of frontal and parietal brain regions relevant for top-down and bottom-up attentional processing. Disconnection among these networks contributes to an age-related decline in attention, but preservation and perhaps even increased patterns of functional brain activation and connectivity also contribute to preserved attentional functioning.

Article

Individuals with mild cognitive impairment (MCI) experience cognitive difficulties and many find themselves in a transitional stage between aging and dementia, making this population a suitable target for cognitive intervention. In MCI, not all cognitive functions are impaired and preserved functions can thus be recruited to compensate for the impact of cognitive impairment. Improving cognition may have a tremendous impact on quality of life and help delay the loss of autonomy that comes with dementia. Several studies have reported evidence of cognitive benefits following cognitive intervention in individuals with MCI. Studies that relied on training memory and attentional control have provided the most consistent evidence for cognitive gains. A few studies have investigated the neurophysiological processes by which these training effects occur. More research is needed to draw clear conclusions on the type of brain processes that are engaged in cognitive training and there are insufficient findings regarding transfer to activities of daily life. Results from recent studies using new technologies such as virtual reality provide encouraging evidence of transfer effects to real-life situations.

Article

Life is filled with goals or intentions that people hope to realize. Some of these are rather mundane (e.g., remembering to purchase a key ingredient for a recipe when stopping at the market), while others are more significant (e.g., remembering to pick up one’s child from school at the end of the day). Prospective memory represents the ability to form and then realize intentions at an appropriate time. A fundamental aspect of prospective memory is that one is engaged in one or more tasks (i.e., ongoing activities) between the formation of an intention and the opportunity to realize the goal. For instance, in the shopping example, one might form the intention at home and then travel to the market and collect several other items before walking past the desired ingredient. Considerable research has demonstrated that the efficiency of prospective memory declines with age, although age-related differences are not universal. The neurocognitive processes underpinning age-related differences in the formation and realization of delayed intentions have been investigated in studies using event-related brain potentials. This research reveals that age-related differences in prospective memory arise from the disruption of neural systems supporting the successful encoding of intentions, the detection of prospective memory cues, and possibly processes supporting the retrieval of intentions from memory when a cue is encountered or efficiently shifting from the ongoing activity to the prospective element of the task. Therefore, strategies designed to ameliorate age-related declines in prospective memory should target a variety of processes engaged during the encoding, retrieval, and enactment of delayed intentions.

Article

Aleksandra Kudlicka and Linda Clare

The number of people living with dementia is growing, and with limited pharmacological treatment options the importance of psychosocial interventions is increasingly recognized. Cognitive rehabilitation is particularly well placed to address the needs of people living with mild and moderate dementia and their family supporters, as it offers a range of tools to tackle the complexity of the condition. It utilizes powerful approaches of problem solving and goal setting combined with evidence-based rehabilitative techniques for managing cognitive impairments. It also incorporates strategies to address emotional and motivational aspects of dementia that may affect a person’s well-being. It is provided on an individual basis, usually in people’s homes, making it directly applicable to everyday life. It is also genuinely person-centered and flexible as the therapy goals are agreed in a collaborative process between the therapist, person with dementia, and family members. Cognitive rehabilitation does not claim to address underlying pathology, but instead focuses on a person’s functional ability and enjoyment of life. Evidence for effectiveness of cognitive rehabilitation in the context of mild and moderate dementia, mostly Alzheimer’s disease (AD), is gradually accumulating with a number of randomized control trials demonstrating that people with mild and moderate dementia can significantly improve their functioning in targeted areas. For example, the GREAT trial with 475 people with mild to moderate Alzheimer’s, vascular, and mixed dementia completed in 2017 in the United Kingdom demonstrated that cognitive rehabilitation improves everyday functioning in relation to individual therapy goals. There is a growing interest in cognitive rehabilitation and the focus shifts to extending evidence to less-common forms of dementia, particularly in people with non-amnestic presentation. Future efforts need to concentrate on promoting the approach and optimizing application in real-life settings with the aim of maximizing benefits for people living with dementia and their families.

Article

Megan S. Barker, Emily C. Gibson, and Gail A. Robinson

The term “acquired brain injury” refers to any type of brain damage that occurs after birth. Two main types of acquired brain injury are stroke and traumatic brain injury (TBI). A stroke occurs when there is a blockage or bleed in the vascular system of the brain, while a TBI results from an external force to the head. Older adults are at a higher risk of both stroke and TBI; thus, overall incidence is increasing as the proportion of older adults in the population is growing. Stroke and TBI result in immediate and long-term cognitive changes. Impairments in the domains of language, attention, memory, executive functions, perception, and social cognition have been documented following stroke and TBI. However, strokes tend to cause focal or selective cognitive disorders, while cognitive deficits following TBI are widespread and can be generalized. Individuals who have suffered a stroke or TBI may also experience psychosocial changes; for example, symptoms of depression and anxiety are common. Functional outcomes, including independence in activities, are varied and are associated with a range of factors including age, injury severity, cognitive disorders, and psychosocial factors. To achieve optimal outcomes for individuals following stroke and TBI, and to reduce the impact of the injury on everyday functioning, a multidisciplinary rehabilitation process is recommended.

Article

Ye In (Jane) Hwang, Kitty-Rose Foley, Samuel Arnold, and Julian Trollor

Autism spectrum disorder (ASD), or autism, is a neurodevelopmental disorder that is typically recognized and diagnosed in childhood. There is no established biological marker for autism; rather, the diagnosis is made based on observation of behavioral traits, including (a) persistent deficits in social interaction and communication, and (b) restricted, repetitive patterns of behavior, interests, or activities. Because autism is a spectrum disorder, autistic individuals are a highly heterogeneous group and differ widely in the presentation and severity of their symptoms. The established prevalence of ASD is approximately 1% of the population. Information about autism in adulthood is limited; most of the literature examines childhood and adolescence. While the term “later life” has traditionally been associated with those over the age of 65, a dire lack of understanding exists for those on the autism spectrum beyond early adulthood. Individuals remain on the spectrum into later life, though some mild improvements in symptoms are observed over time. Autistic adults experience high levels of physical and mental health comorbidities. Rates of participation in employment and education are also lower than that of the general population. Quality of life is reportedly poorer for autistic adults than for nonautistic peers, though this is not affected by age. More robust studies of the health, well-being, and needs of autistic adults are needed, especially qualitative investigations of adulthood and aging and longitudinal studies of development over the lifespan.

Article

Karen Z. H. Li, Halina Bruce, and Rachel Downey

Research on the interplay of cognition and mobility in old age is inherently multidisciplinary, informed by findings from life span developmental psychology, kinesiology, cognitive neuroscience, and rehabilitation sciences. Early observational work revealed strong connections between sensory and sensorimotor performance with measures of intellectual functioning. Subsequent work has revealed more specific links between measures of cognitive control and gait quality. Convergent evidence for the interdependence of cognition and mobility is seen in patient studies, wherein cognitive impairment is associated with increased frequency and risk of falling. Even in cross-sectional studies involving healthy young and older adults, the effects of aging on postural control and gait are commonly exacerbated when participants perform a motor task with a concurrent cognitive load. This motor-cognitive dual-task method assumes that cognitive and motor domains compete for common capacity, and that older adults recruit more cognitive capacity than young adults to support gait and posture. Neuroimaging techniques such as magnetic resonance imaging (MRI) have revealed associations between measures of mobility (e.g., gait velocity and postural control) and measures of brain health (e.g., gray matter volumes, cortical thickness, white matter integrity, and functional connectivity). The brain regions most often associated with aging and mobility also appear to subserve high-level cognitive functions such as executive control, attention, and working memory (e.g., dorsolateral prefrontal cortex, anterior cingulate). Portable functional neuroimaging has allowed for the examination of neural functioning during real-time walking, often in conjunction with detailed spatiotemporal measures of gait. A more recent strategy that addresses the interdependence of cognitive and motor processes in old age is cognitive remediation. Cognitive training has yielded promising improvements in balance, walking, and overall mobility status in healthy older adults, and those with age-related neurodegenerative conditions such as Parkinson’s Disease.