Healthy aging is accompanied by decrements in episodic memory and working memory. Significant efforts have therefore been made to augment episodic and working memory in healthy older adults. Two principal approaches toward memory rehabilitation adults are restorative approaches and compensatory approaches. Restorative approaches aim to repair the affected memory processes by repeated, adaptive practice (i.e., the trained task becomes more difficult as participants improve), and have focused on recollection training, associative memory training, object-location memory training, and working memory training. The majority of these restorative approaches have been proved to be efficacious, that is, participants improve on the trained task, and there is considerable evidence for maintenance of training effects weeks or months after the intervention is discontinued. Transfer of restorative training approaches has been more elusive and appears limited to other tasks relying on the same domains or processes. Compensatory approaches to memory strive to bypass the impairment by teaching people mnemonic and lifestyle strategies to bolster memory performance. Specific mnemonic strategy training approaches as well as multimodal compensatory approaches that combine strategy training with counseling about other factors that affect memory (e.g., memory self-efficacy, relaxation, exercise, and cognitive and social engagement) have demonstrated that older adults can learn new mnemonics and implement them to the benefit of memory performance, and can adjust their views and expectations about their memory to better cope with the changes that occur during healthy aging. Future work should focus on identifying the personal characteristics that predict who will benefit from training and on developing objective measures of the impact of memory rehabilitation on older adults’ everyday functioning.
Article
Memory Rehabilitation in Healthy Aging
Nicole D. Anderson
Article
Neuroimaging
Chelsea Ekstrand
The growing field of neuroimaging has offered exciting insights into the inner workings of the human brain in health and disease. Structural neuroimaging techniques provide detailed information about the physical properties and anatomy of the brain and nervous system, including cerebrospinal fluid, blood vessels, and different types of tissue. The most commonly used structural neuroimaging techniques are computed tomography (CT) and structural magnetic resonance imaging (MRI). CT uses X-rays to create a two-dimensional representation of neural tissue, whereas MRI quantifies differences in tissue density by manipulating molecules using magnetic fields, magnetic field gradients, and radio waves. Functional neuroimaging techniques provide a measure of when and where activity is occurring in the brain by quantifying underlying physiological processes. Functional neuroimaging techniques fall into two broad categories: measures of direct brain activity, including electroencephalography (EEG) and magnetoencephalography (MEG), and measures of indirect brain activity, such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). Different functional neuroimaging techniques can be used to examine different physiological changes, including electrical activity, magnetic field changes, metabolic and neurotransmitter activity, and indirect measures of blood flow to offer insight into cognitive processing. Structural and functional neuroimaging have made a profound impact on understanding the brain both during normal functioning and in clinical pathology. Overall, neuroimaging is a powerful tool for both research and clinical practice and offers a noninvasive window into the central nervous system of humans in both health and disease.