1-4 of 4 Results  for:

  • Developmental Psychology x
  • Biological Foundations of Psychology x
  • Cognitive Psychology/Neuroscience x
Clear all

Article

Binocular Vision  

Suzanne McKee and Preeti Verghese

This article describes human binocular vision. While it is focused primarily on human stereopsis, it also briefly tells about other binocular functions, including binocular summation, rivalry, and vergence, the eye movement that is driven by stereopsis. Stereopsis refers to the depth perception generated by small differences in the locations of visual features in the two retinal images; these differences in retinal location are called disparities. Disparities are detected by special binocularly driven cortical neurons whose properties are outlined here; the article also describes studies that have used fMRI imaging to show that many areas of human cortex respond to depth based on disparity. The development of stereopsis in human infants, as well as clinical abnormalities in stereopsis, is also documented.

Article

Dyslexia  

Linda Siegel

Dyslexia, or a reading disability, occurs when an individual has great difficulty at the level of word reading and decoding. Comprehension of text, writing, and spelling are also affected. The diagnosis of dyslexia involves the use of reading tests, but the continuum of reading performance means that any cutoff point is arbitrary. The IQ score does not play a role in the diagnosis of dyslexia. Dyslexia is a language-based learning disability. The cognitive difficulties of dyslexics include problems with recognizing and manipulating the basic sounds in a language, language memory, and learning the sounds of letters. Dyslexia is a neurological condition with a genetic basis. There are abnormalities in the brains of dyslexic individuals. There are also differences in the electrophysiological and structural characteristics of the brains of dyslexics. Hope for dyslexia involves early detection and intervention and evidence-based instruction.

Article

Effects of Early Visual Deprivation  

Brigitte Röder and Ramesh Kekunnaya

As a consequence of congenital blindness, compensatory performance in the intact sensory modalities has been documented in humans in many domains, including auditory and tactile perception, auditory localization, voice and language processing, and memory. Both changes of the neural circuits associated with the intact sensory systems (intramodal plasticity) and an activation of deprived visual cortex (crossmodal plasticity) have been observed in blind humans. Compensation in congenitally blind and late-blind individuals involves partially different neural mechanisms. If sight is restored in patients who were born with dense bilateral cataracts (opaque lenses preventing patterned light to reach the retina), considerable visual recovery has been observed in basic visual functions even after long periods of visual deprivation. Functional recovery has been found to be lower for higher-order visual processes, which has been linked to deficits in the functional specialization of neural circuits. First evidence has suggested that crossmodal plasticity largely retracts after sight restoration but that crossmodal activity does not seem to fully dissolve. In contrast, intramodal adaptations in the auditory system have been observed to persist after sight restoration. Except for predominantly subcortically mediated multisensory functions, many multisensory processes have been found to be altered even many years after sight restoration. On the one hand, research in permanently blind humans has documented a high capability of the human neurocognitive system to adapt to an atypical environment. On the other hand, research in sight recovery individuals who had suffered a transient phase of visual deprivation following birth has demonstrated functional specific sensitive periods in the development of visual and multisensory neural circuits.

Article

Music Perception  

Marcus T. Pearce

Music perception covers all aspects of psychological and neural processing invoked while listening to music. In order to make sense of a musical stimulus, the perceptual system must infer an internal representation of the structure present in a piece of music, including the attributes of individual events (including pitch, timbre, loudness, and timing), groups of events (such as chords, voices, and phrases), and structural relationships between such groups, so that larger-scale aspects of musical form and thematic structure can be perceived. Such representations are stored in memory at timescales ranging from seconds for echoic memory to decades in the case of long-term memory for music, which consists of schematic knowledge of musical styles, veridical memory for particular familiar pieces of music, and episodic memory for music heard at a particular place and time. Stored representations of music allow the generation of top-down expectations for the attributes of forthcoming events while listening to music, which play a role in the perception of music as it unfolds dynamically in time and also the emotional and aesthetic experience of music. Music is a communicative medium conveying affective meaning from the composer and performer to the listener, via several psychological mechanisms and using a range of cues in the music, some of which are universal, others culture-specific. Individuals show behavioral and physiological effects of listening to music from birth onward and learn the syntactic structure of the musical styles to which they are exposed within their culture, shaping their music perception. Some individuals undertake explicit musical training, which can additionally shape their perception of music, sometimes in fundamental ways. Listening to music can impair performance on concurrent tasks involving working memory due to competing access for resources but can improve performance when listening takes place prior to the task due to its positive effect on affective state. Music is a universal human cultural phenomenon whose complexity requires the activation of a diverse range of perceptual and cognitive mechanisms, making it an interesting target for psychological and neuroscientific investigation.