1-3 of 3 Results

  • Keywords: growth curve model x
Clear all

Article

Longitudinal structural equation modeling (LSEM) is used to answer lifespan relevant questions such as (a) what is the effect of one variable on change in and other, (b) what is the average trajectory or growth rate of some psychological variable, and (c) what variability is there in average trajectories and what predicts this variability. The first of these questions is often answered by a LSEM called an autoregressive cross-lagged (ACL) model. The other two questions are most typically answered by an LSEM called a latent growth curve (LGC). These models can be applied to a few time waves (measured over several years) or to many time waves (such as present in diary studies) and can be altered, expanded, or even integrated. However, decisions on what model to use must be driven by the research question. The right tool for the job is not always the most complex. And, more importantly, the right tool must be matched to the best possible research design. Sometimes in lifespan research the right tool is LSEM. However, researchers should prioritize research design as well as careful specification of the processes and mechanisms they are interested in rather than simply choosing the most complicated LSEM they can find.

Article

Johnson Ching Hong Li and Virginia Man Chung Tze

In behavioral, social, and developmental research, researchers often begin with a fundamental question that examines whether there is a significant relationship between an independent variable (IV; e.g., video games) and a dependent variable (DV; e.g., aggression). However, examining this simple IV-DV relationship is not sufficient in most research scenarios given that this relationship may differ across the levels of a third variable, which is known as a moderator. For example, researchers may examine the degree to which the relationship between an independent variable and a dependent variable differs across the levels of a moderator or moderators (e.g., gender, ethnicity, socioeconomic status, intervention) to provide a more complete picture of the IV-DV effect and how this effect is or is not applicable to certain groups of participants. In lifespan developmental research, a key component lies in the study of change, growth, or trajectory of one’s life over time. Undoubtedly, not all individuals may follow the same developmental change or growth over time and examining moderators (e.g., gender, intervention, etc.) that may explain these individual changes is crucial for researchers to better understand the effects on their research investigation and for practical implications. The existing literature shows that conceptual and methodological strategies for moderation analysis have been developed and evolved in lifespan developmental psychology. In particular, researchers in lifespan developmental psychology have used various types of moderation analyses, including assessing whether moderators can explain the pretest and posttest difference based on the conventional analysis of variance (ANOVA) framework and evaluating whether moderators may explain how different individuals follow or deviate from the general growth and trajectory based on advanced latent growth curve modeling (LGCM). Researchers who study lifespan development have realized the importance of moderation effects in their work. In light of the complexity of current biological, psychological, and social factors embedded in lifespan developmental research, the trend of utilizing more sophisticated LGCM than ANOVA to understand the growth trajectories will receive more attention in the future.

Article

Lifespan development is embedded in multiple social systems and social relationships. Lifespan developmental and relationship researchers study individual codevelopment in various dyadic social relationships, such as dyads of parents and children or romantic partners. Dyadic data refers to types of data for which observations from both members of a dyad are available. The analysis of dyadic data requires the use of appropriate data-analytic methods that account for such interdependencies. The standard actor-partner interdependence model, the dyadic growth curve model, and the dyadic dual change score model can be used to analyze data from dyads. These models allow examination of questions related to dyadic associations such as whether individual differences in an outcome can be predicted by one’s own (actor effects) and the other dyad member’s (partner effects) level in another variable, correlated change between dyad members, and cross-lagged dyadic associations, that is, whether one dyad member’s change can be predicted by the previous levels of the other dyad member. The choice of a specific model should be guided by theoretical and conceptual considerations as well as by features of the data, such as the type of dyad, the number and spacing of observations, or distributional properties of variables.