1-8 of 8 Results

  • Keywords: rehabilitation x
Clear all

Article

Healthy aging is accompanied by decrements in episodic memory and working memory. Significant efforts have therefore been made to augment episodic and working memory in healthy older adults. Two principal approaches toward memory rehabilitation adults are restorative approaches and compensatory approaches. Restorative approaches aim to repair the affected memory processes by repeated, adaptive practice (i.e., the trained task becomes more difficult as participants improve), and have focused on recollection training, associative memory training, object-location memory training, and working memory training. The majority of these restorative approaches have been proved to be efficacious, that is, participants improve on the trained task, and there is considerable evidence for maintenance of training effects weeks or months after the intervention is discontinued. Transfer of restorative training approaches has been more elusive and appears limited to other tasks relying on the same domains or processes. Compensatory approaches to memory strive to bypass the impairment by teaching people mnemonic and lifestyle strategies to bolster memory performance. Specific mnemonic strategy training approaches as well as multimodal compensatory approaches that combine strategy training with counseling about other factors that affect memory (e.g., memory self-efficacy, relaxation, exercise, and cognitive and social engagement) have demonstrated that older adults can learn new mnemonics and implement them to the benefit of memory performance, and can adjust their views and expectations about their memory to better cope with the changes that occur during healthy aging. Future work should focus on identifying the personal characteristics that predict who will benefit from training and on developing objective measures of the impact of memory rehabilitation on older adults’ everyday functioning.

Article

In addition to the disruptive impact of sport injury on physical functioning, injury can have psychological effects on athletes. Consistent with contemporary models of psychological response to sport injury, aspects of psychological functioning that can be affected by sport injury include pain, cognition, emotion, and behavior. Part of the fabric of sport and ubiquitous even among “healthy” athletes, pain is a common consequence of sport injury. Postinjury pain is typically of the acute variety and can be exacerbated, at least temporarily, by surgery and some rehabilitation activities. Cognitive responses to sport injury include appraising the implications of the injury for one’s well-being and ability to manage the injury, making attributions for injury occurrence, using cognitive coping strategies, perceiving benefits of injury, and experiencing intrusive injury-related thoughts and images, increased perception of injury risk, reduced self-esteem and self-confidence, and diminished neurocognitive performance. Emotional responses to sport injury tend to progress from a preponderance of negative emotions (e.g., anger, confusion, depression, disappointment, fear, frustration) shortly after injury occurrence to a more positive emotional profile over the course of rehabilitation. A wide variety of personal and situational factors have been found to predict postinjury emotions. In terms of postinjury behavior, athletes have reported initiating coping strategies such as living their lives as normally as possible, distracting themselves, seeking social support, isolating themselves from others, learning about their injuries, adhering to the rehabilitation program, pursuing interests outside sport, consuming alcohol, taking recreational and/or performance-enhancing substances, and, in rare cases, attempting suicide. Psychological readiness to return to sport after injury is an emerging concept that cuts across cognitive, emotional, and behavioral responses to sport injury.

Article

Heather N. Schuyler, Brieanne R. Seguin, Nicole Anne Wilkins, and J. Jordan Hamson-Utley

The practice of athletic training involves both physical and psychological strategies when leading patients through the injury recovery process. Research on the psychology of injury offers theoretical foundations that guide the application of strategies to assist the patient with stressors that emerge during rehabilitation. This article applies theory to athletic training practice during injury recovery by examining the stressors that patients experience across the phases of rehabilitation. Addressing both physical and psychological aspects of injury recovery is expected by patients and provides a holistic care model for healthcare practitioners.

Article

Neuropsychological rehabilitation (NR) is concerned with the amelioration of deficits caused by insult to the brain. It adopts a goal-planning approach and addresses real-life difficulties. Neuropsychology studies how the brain affects behavior, emotion, and cognition. Rehabilitation is a process whereby people who are disabled work together with professional staff, relatives, and others to achieve optimum physical, psychological, and vocational well-being. Rehabilitation is not synonymous with recovery, nor is it treatment. It is a two-way interactive process with professional staff and others who aim to remediate or alleviate difficulties, adopting a holistic approach in which cognition, emotion, and psychosocial problems are treated together, aided by an increasing use of technological aids. NR enables people with disabilities to achieve their optimum level of well-being, reduce problems in everyday life, and help them return to the most appropriate environments. There may also be some partial or limited recovery of function and certainly some substitution of function. Accepting that return of normal functioning is highly unlikely, rehabilitation finds ways to help people learn more efficiently, compensate for their difficulties, and, when necessary, modify the environment. While theoretical models have proved helpful, indeed essential, in identifying cognitive strengths and weaknesses, in explaining phenomena, and in making predictions about behavior, they are insufficient, on their own, to seriously influence rehabilitation aimed at making lives more adaptable to problems encountered in everyday living. NR should focus on goals relevant to a person’s individual everyday life, it should be implemented in the environment where the person lives, and have personally meaningful themes, activities, settings, and interactions. We know from numerous studies that NR can be clinically effective. Although rehabilitation can be expensive in the short term, there is evidence that it is cost-effective in the long term.

Article

Ian Q. Whishaw and Megan Sholomiski

A brain lesion is an area of damage, injury, or abnormal change to a part of the brain. Brain lesions may be caused by head injury, disease, surgery, or congenital disorders, and they are classified by the cause, extent, and locus of injury. Lesions cause many behavioral symptoms. Symptom severity generally corresponds to the region and extent of damaged brain. Thus, behavior is often a reliable indicator of the type and extent of a lesion. Observations of patients suffering brain lesions were first recorded in detail in the 18th century, and lesion studies continue to shape modern neuroscience and to give insight into the functions of brain regions. Recovery, defined as any return of lost behavioral or cognitive function, depends on the age, sex, genetics, and lifestyle of patients, and recovery may be predicted by the cause of injury. Most recovery occurs within the first 6 to 9 months after injury and likely involves a combination of compensatory behaviors and physiological changes in the brain. Children often recover some function after brain lesions better than adults, though both children and adults experience residual deficits. Brain lesion survival rates are improved by better diagnostic tools and treatments. Therapeutic interventions and treatments for brain lesions include surgery, pharmaceuticals, transplants, and temperature regulation, each with varying degrees of success. Research in treating brain lesions is progressing, but in principle a cure will only be complete when brain lesions are replaced with healthy tissue.

Article

Holly Bridge

The sensation of vision arises from the detection of photons of light at the eye, but in order to produce the percept of the world, extensive regions of the brain are required to process the visual information. The majority of information entering the brain via the optic nerve from the eye projects via the lateral geniculate nucleus (LGN) of the thalamus to the primary visual cortex, the largest visual area, having been reorganized such that one side of the brain represents one side of the world. Damage to the primary visual cortex in one hemisphere therefore leads to a loss of conscious vision on the opposite side of the world, known as hemianopia. Despite this cortical blindness, many patients are still able to detect visual stimuli that are presented in the blind region if forced to guess whether a stimulus is present or absent. This is known as “blindsight.” For patients to gain any information (conscious or unconscious) about the visual world, the input from the eye must be processed by the brain. Indeed, there is considerable evidence from functional brain imaging that several visual areas continue to respond to visual stimuli presented within the blind region, even when the patient is unaware of the stimulus. Furthermore, the use of diffusion imaging allows the microstructure of white matter pathways within the visual system to be examined to see whether they are damaged or intact. By comparing patients who have hemianopia with and without blindsight it is possible to determine the pathways that are linked to blindsight function. Through understanding the brain areas and pathways that underlie blindsight in humans and non-human primates, the aim is to use modern neuroscience to guide rehabilitation programs for use after stroke.

Article

The sociocultural aspects of sport injury and recovery include the broad landscape of social beliefs, climates, processes, cultures, institutions, and societies that surround the full chronological spectrum of sport injury outcomes, ranging from risk through to rehabilitation and retirement. A social ecological view of research on this topic demonstrates that sociocultural influences affect sport injury outcomes via interrelated sport systems extending from the intrasystem (i.e., within sports persons) through the microsystem (i.e., sport relationships), mesosystem (i.e., sport organizations), exosystem (i.e., sport governing bodies), and macrosystem (i.e., sport cultures). Affected sport injury outcomes include sport injury risks and responses during rehabilitation, return to play, and retirement from sport. Some specific examples of sociocultural themes evident in research literature include personal conformity to the cultural expectation to play hurt, social conventions of behavior when sport injuries occur, institutional character or ethics when making return to play decisions, guidelines for the care of athletes prescribed by sport governing bodies, and the economic costs to society for sport injuries. Many elements of sport injury are affected by these sociocultural influences, such as the risk of injuries, rehabilitation processes, and career terminations. Continuing debates and discussions include advocacy for sport rule changes, bans on dangerous sports, institutional responsibility, and global sport safety efforts. These form the basis for recommendations about sociocultural interventions designed to reduce sport injury risks and optimize effective injury recoveries through social and cultural best practices.

Article

Aleksandra Kudlicka and Linda Clare

The number of people living with dementia is growing, and with limited pharmacological treatment options the importance of psychosocial interventions is increasingly recognized. Cognitive rehabilitation is particularly well placed to address the needs of people living with mild and moderate dementia and their family supporters, as it offers a range of tools to tackle the complexity of the condition. It utilizes powerful approaches of problem solving and goal setting combined with evidence-based rehabilitative techniques for managing cognitive impairments. It also incorporates strategies to address emotional and motivational aspects of dementia that may affect a person’s well-being. It is provided on an individual basis, usually in people’s homes, making it directly applicable to everyday life. It is also genuinely person-centered and flexible as the therapy goals are agreed in a collaborative process between the therapist, person with dementia, and family members. Cognitive rehabilitation does not claim to address underlying pathology, but instead focuses on a person’s functional ability and enjoyment of life. Evidence for effectiveness of cognitive rehabilitation in the context of mild and moderate dementia, mostly Alzheimer’s disease (AD), is gradually accumulating with a number of randomized control trials demonstrating that people with mild and moderate dementia can significantly improve their functioning in targeted areas. For example, the GREAT trial with 475 people with mild to moderate Alzheimer’s, vascular, and mixed dementia completed in 2017 in the United Kingdom demonstrated that cognitive rehabilitation improves everyday functioning in relation to individual therapy goals. There is a growing interest in cognitive rehabilitation and the focus shifts to extending evidence to less-common forms of dementia, particularly in people with non-amnestic presentation. Future efforts need to concentrate on promoting the approach and optimizing application in real-life settings with the aim of maximizing benefits for people living with dementia and their families.