1-4 of 4 Results  for:

  • Keywords: information processing x
  • Cognitive Psychology/Neuroscience x
Clear all

Article

Influence of Anxiety on Cognitive Control Processes  

DeMond M. Grant and Evan J. White

Cognitive control is the ability to direct attention and cognitive resources toward achieving one’s goals. However, research indicates that anxiety biases multiple cognitive processes, including cognitive control. This occurs in part because anxiety leads to excessive processing of threatening stimuli at the expense of ongoing activities. This enhanced processing of threat interferes with several cognitive processes, which includes how individuals view and respond to their environment. Specifically, research indicates that anxious individuals devote their attention toward threat when considering both early, automatic processes and later, sustained attention. In addition, anxiety has negative effects on working memory, which involves the ability to hold and manipulate information in one’s consciousness. Anxiety has been found to decrease the resources necessary for effective working memory performance, as well as increase the likelihood of negative information entering working memory. Finally, anxiety is characterized by focusing excessive attention on mistakes, and there is also a reduction in the cognitive control resources necessary to correct behavior. Enhancing our knowledge of how anxiety affects cognitive control has broad implications for understanding the development of anxiety disorders, as well as emerging treatments for these conditions.

Article

Perceptual Learning: Perception and Experience  

Barbara Anne Dosher and Zhong-Lin Lu

Perceptual learning is the training-induced improvement in the accuracy or speed of relevant perceptual decisions about what is seen, heard, or felt. It occurs in all sensory modalities and in most tasks. The magnitude and generalizability of this learning may, however, depend on the stimulus modality, the level of sensory representation most aligned to the task, and the methods of training, including attention, feedback, reward, and the training protocol. What is known about perceptual learning in multiple modalities has been advanced based on behavioral studies and consideration of physiology and brain imaging, and the theoretical and computational models that systematize and promote understanding of the complex patterns of perceptual learning. Perceptual training might be used in translational applications, such as education, remediation of perceptual deficits, or maintenance of performance.

Article

Visual Attention With Cognitive Aging  

David J. Madden and Zachary A. Monge

Age-related decline occurs in several aspects of fluid, speed-dependent cognition, particularly those related to attention. Empirical research on visual attention has determined that attention-related effects occur across a range of information processing components, including the sensory registration of features, selection of information from working memory, controlling motor responses, and coordinating multiple perceptual and cognitive tasks. Thus, attention is a multifaceted construct that is relevant at virtually all stages of object identification. A fundamental theme of attentional functioning is the interaction between the bottom-up salience of visual features and top-down allocation of processing based on the observer’s goals. An underlying age-related slowing is prominent throughout visual processing stages, which in turn contributes to age-related decline in some aspects of attention, such as the inhibition of irrelevant information and the coordination of multiple tasks. However, some age-related preservation of attentional functioning is also evident, particularly the top-down allocation of attention. Neuroimaging research has identified networks of frontal and parietal brain regions relevant for top-down and bottom-up attentional processing. Disconnection among these networks contributes to an age-related decline in attention, but preservation and perhaps even increased patterns of functional brain activation and connectivity also contribute to preserved attentional functioning.

Article

Hearing and Cognitive Aging  

Margaret Kathleen Pichora-Fuller

Age-related hearing loss is heterogeneous. Multiple causes can damage the auditory system from periphery to cortex. There can be changes in thresholds for detecting sound and/or in the perception of supra-threshold sounds. Influenced by trends in neuroscience and gerontology, research has shifted from a relatively narrow modality-specific focus to a broader interest in how auditory aging interacts with other domains of aging. The importance of the connection between sensory and cognitive aging was reported based on findings from the Berlin Aging Study in the mid-1990s. Of the age-related sensory and motor declines that become more prevalent with age, hearing loss is the most common, and it is the most promising as an early marker for risk of cognitive decline and as a potentially modifiable mid-life risk factor for dementia. Hearing loss affects more than half of the population by 70 years of age and about 80% of people over 80 years of age. It is more prevalent in people with dementia than in peers with normal cognition. People with hearing loss can be up to five times more likely to develop dementia compared to those with normal hearing. Evidence from cross-sectional studies has confirmed significant correlations between hearing loss and cognitive decline in older adults. Longitudinal studies have demonstrated that hearing loss is associated with incident cognitive decline and dementia. Various biological, psychological, and social mechanisms have been hypothesized to account for these associations, but the causes remain unproven. Nevertheless, it is widely believed that there is a meaningful interface among sensory, motor, and cognitive dysfunctions in aging, with implications for issues spanning brain plasticity to quality of life. Experimental research investigating sensory-motor-cognitive interactions provides insights into how age-related declines in these domains may be exacerbated or compensated. Ongoing research on auditory aging and how it interfaces with cognitive aging is expected to increase knowledge of the neuroscience of aging, provide insights into how to optimize the everyday functioning of older adults, and inspire innovations in clinical practice and social policy.