1-1 of 1 Results  for:

  • Keywords: longitudinal x
  • Developmental Psychology x
  • Biological Foundations of Psychology x
Clear all

Article

Michael J. Lyons, Chandra A. Reynolds, William S. Kremen, and Carol E. Franz

The rapidly increasing number of people age 65 and older around the world has important implications for public health and social policy, making it imperative to understand the factors that influence the aging process. Twin studies can provide information that addresses critical questions about aging. Twin studies capitalize on a naturally occurring experiment in which there are some pairs of individuals who are born together and share 100% of their segregating genes (monozygotic twins) and some pairs that share approximately 50% (dizygotic twins). Twins can shed light on the relative influence of genes and environmental factors on various characteristics at various times during the life course and whether the same or different genetic influences are operating at different times. Twin studies can investigate whether characteristics that co-occur reflect overlapping genetic or environmental determinants. Discordant twin pairs provide an opportunity for a unique and powerful case-control study. There are numerous methodological issues to consider in twin studies of aging, such as the representativeness of twins and the assumption that the environment does not promote greater similarity within monozygotic pairs than dizygotic pairs. Studies of aging using twins may include many different types of measures, such as cognitive, psychosocial, biomarkers, and neuroimaging. Sophisticated statistical techniques have been developed to analyze data from twin studies. Structural equation modeling has proven to be especially useful. Several issues, such as assessing change and dealing with missing data, are particularly salient in studies of aging and there are a number of approaches that have been implemented in twin studies. Twins lend themselves very well to investigating whether genes influence one’s sensitivity to environmental exposures (gene-environment interaction) and whether genes influence the likelihood that an individual will experience certain environmental exposures (gene-environment correlation). Prior to the advent of modern molecular genetics, twin studies were the most important source of information about genetic influences. Dramatic advances in molecular genetic technology hold the promise of providing great insight into genetic influences, but these approaches complement rather than supplant twin studies. Moreover, there is a growing trend toward integrating molecular genetic methods into twin studies.