1-6 of 6 Results  for:

  • Keywords: longitudinal x
  • Developmental Psychology x
  • Methods and Approaches in Psychology x
Clear all

Article

Joseph E. Gaugler, Colleen M. Peterson, Lauren L. Mitchell, Jessica Finlay, and Eric Jutkowitz

Mixed methods research consists of collecting and analyzing qualitative and quantitative data within a singular study. The “methods” of mixed methods research vary, but the ultimate goal is to provide greater understanding and explanation via the integration of qualitative and quantitative data. Mixed methods studies have the potential to advance our understanding of complex phenomena over time in adult development and aging (e.g., depression following the death of a spouse), but the utility of this approach depends on its application. The authors systematically searched the literature (CINHAL, Embase, Ovid/Medline, PubMed, PsychInfo, and ProQuest) to identify longitudinal mixed methods studies focused on aging. They identified 6,351 articles published between 1994 and 2017, of which 174 met the inclusion criteria. The majority of mixed methods studies reported on the evaluation of interventions or educational programs. Non-interventional studies tended to report on experiences related to the progression of various health conditions, the needs and experiences of caregivers, and the lived experiences of older adults. About half (n = 81) of the mixed methods studies followed a sequential explanatory design where a qualitative component followed quantitative evaluation, and most of these studies achieved “integration” by comparing qualitative and quantitative data in Results sections. There was considerable heterogeneity across studies in terms of overall design (randomized trials, program evaluations, cohort studies, and case studies). As a whole, the literature suffered from key limitations, including a lack of reporting on sample selection methodology and mixed methods design characteristics. To maximize the value of mixed methods in adult development in aging research, investigators should conform to recommended guidelines (e.g., depict participant study flow and use recommended notation) and consider more sophisticated mixed methods applications to advance the state of the art.

Article

Multilevel modeling is a data analytic framework that is appropriate when analyzing data that are dependent due to the clustering of observations in higher-level units. Clustered data appear in a variety of disciplines, which makes multilevel modeling a necessary data analytic tool for many researchers. Longitudinal data are a special kind of clustered data as the repeated observations are clustered within individuals. Multilevel models can be applied to longitudinal data to examine how individuals change over time and how individuals differ in their change processes over time. For longitudinal data, linear multilevel models, where the fixed- and random-effects parameters enter the model in a linear fashion, and nonlinear multilevel models, where at least one fixed-and/or random-effect parameter enters the model in a nonlinear fashion are commonly estimated to examine different forms of the individual change process. Multilevel structural equation modeling is an extension of multilevel modeling that allows for multivariate outcomes, and this framework is very useful for modeling multivariate longitudinal data (e.g., multivariate growth models and second-order growth models).

Article

Gawon Cho, Giancarlo Pasquini, and Stacey B. Scott

The study of human development across the lifespan is inherently about patterns across time. Although many developmental questions have been tested with cross-sectional comparisons of younger and older persons, understanding of development as it occurs requires a longitudinal design, repeatedly observing the same individual across time. Development, however, unfolds across multiple time scales (i.e., moments, days, years) and encompasses both enduring changes and transient fluctuations within an individual. Measurement burst designs can detect such variations across different timescales, and disentangle patterns of variations associated with distinct dimensions of time periods. Measurement burst designs are a special type of longitudinal design in which multiple “bursts” of intensive (e.g., hourly, daily) measurements are embedded in a larger longitudinal (e.g., monthly, yearly) study. The hybrid nature of these designs allow researchers to address questions not only of cross-sectional comparisons of individual differences (e.g., do older adults typically report lower levels of negative mood than younger adults?) and longitudinal examinations of intraindividual change (e.g., as individuals get older, do they report lower levels of negative mood?) but also of intraindividual variability (e.g., is negative mood worse on days when individuals have experienced an argument compared to days when an argument did not occur?). Researchers can leverage measurement burst designs to examine how patterns of intraindividual variability unfolding over short timescales may exhibit intraindividual change across long timescales in order to understand lifespan development. The use of measurement burst designs provides an opportunity to collect more valid and reliable measurements of development across multiple time scales throughout adulthood.

Article

Jeremy B. Yorgason, Melanie S. Hill, and Mallory Millett

The study of development across the lifespan has traditionally focused on the individual. However, dyadic designs within lifespan developmental methodology allow researchers to better understand individuals in a larger context that includes various familial relationships (husbands and wives, parents and children, and caregivers and patients). Dyadic designs involve data that are not independent, and thus outcome measures from dyad members need to be modeled as correlated. Typically, non-independent outcomes are appropriately modeled using multilevel or structural equation modeling approaches. Many dyadic researchers use the actor-partner interdependence model as a basic analysis framework, while new and exciting approaches are coming forth in the literature. Dyadic designs can be extended and applied in various ways, including with intensive longitudinal data (e.g., daily diaries), grid sequence analysis, repeated measures actor/partner interdependence models, and vector field diagrams. As researchers continue to use and expand upon dyadic designs, new methods for addressing dyadic research questions will be developed.

Article

Lifespan development is embedded in multiple social systems and social relationships. Lifespan developmental and relationship researchers study individual codevelopment in various dyadic social relationships, such as dyads of parents and children or romantic partners. Dyadic data refers to types of data for which observations from both members of a dyad are available. The analysis of dyadic data requires the use of appropriate data-analytic methods that account for such interdependencies. The standard actor-partner interdependence model, the dyadic growth curve model, and the dyadic dual change score model can be used to analyze data from dyads. These models allow examination of questions related to dyadic associations such as whether individual differences in an outcome can be predicted by one’s own (actor effects) and the other dyad member’s (partner effects) level in another variable, correlated change between dyad members, and cross-lagged dyadic associations, that is, whether one dyad member’s change can be predicted by the previous levels of the other dyad member. The choice of a specific model should be guided by theoretical and conceptual considerations as well as by features of the data, such as the type of dyad, the number and spacing of observations, or distributional properties of variables.

Article

Alexandre J.S. Morin and David Litalien

As part of the Generalized Structural Equation Modeling framework, mixture models are person-centered analyses seeking to identify distinct subpopulations, or profiles, of participants differing quantitatively and qualitatively from one another on a configuration of indicators and/or relations among these indicators. Mixture models are typological (resulting in a classification system), probabilistic (each participant having a probability of membership into all profiles based on prototypical similarity), and exploratory (the optimal model is typically selected based on a comparison of alternative specifications) in nature, and can take different forms. Latent profile analyses seek to identify subpopulations of participants differing from one another on a configuration of indicators and can be extended to factor mixture analyses allowing for the incorporation of latent factors to the model. In contrast, mixture regression analyses seek to identify subpopulations of participants’ differing from one another in terms of relations among profile indicators. These analyses can be extended to the multiple-group and/or longitudinal analyses, allowing researchers to conduct tests of profile similarity across different samples of participants or time points, and latent transition analyses can be used to assess probabilities of profiles transition over time among a sample of participants (i.e., within person stability and change in profile membership). Finally, growth mixture analyses are built from latent curve models and seek to identify subpopulations of participants following quantitatively and qualitatively distinct trajectories over time. All of these models can accommodate covariates, used either as predictors, correlates, or outcomes, and can even be extended to tests of mediation and moderation.