Show Summary Details

Page of

PRINTED FROM the OXFORD RESEARCH ENCYCLOPEDIA, PSYCHOLOGY (oxfordre.com/psychology). (c) Oxford University Press USA, 2019. All Rights Reserved. Personal use only; commercial use is strictly prohibited. Please see applicable Privacy Policy and Legal Notice (for details see Privacy Policy and Legal Notice).

date: 16 October 2019

Summary and Keywords

In behavioral, social, and developmental research, researchers often begin with a fundamental question that examines whether there is a significant relationship between an independent variable (IV; e.g., video games) and a dependent variable (DV; e.g., aggression). However, examining this simple IV-DV relationship is not sufficient in most research scenarios given that this relationship may differ across the levels of a third variable, which is known as a moderator. For example, researchers may examine the degree to which the relationship between an independent variable and a dependent variable differs across the levels of a moderator or moderators (e.g., gender, ethnicity, socioeconomic status, intervention) to provide a more complete picture of the IV-DV effect and how this effect is or is not applicable to certain groups of participants.

In lifespan developmental research, a key component lies in the study of change, growth, or trajectory of one’s life over time. Undoubtedly, not all individuals may follow the same developmental change or growth over time and examining moderators (e.g., gender, intervention, etc.) that may explain these individual changes is crucial for researchers to better understand the effects on their research investigation and for practical implications. The existing literature shows that conceptual and methodological strategies for moderation analysis have been developed and evolved in lifespan developmental psychology. In particular, researchers in lifespan developmental psychology have used various types of moderation analyses, including assessing whether moderators can explain the pretest and posttest difference based on the conventional analysis of variance (ANOVA) framework and evaluating whether moderators may explain how different individuals follow or deviate from the general growth and trajectory based on advanced latent growth curve modeling (LGCM). Researchers who study lifespan development have realized the importance of moderation effects in their work. In light of the complexity of current biological, psychological, and social factors embedded in lifespan developmental research, the trend of utilizing more sophisticated LGCM than ANOVA to understand the growth trajectories will receive more attention in the future.

Keywords: moderation, lifespan developmental analyses, interaction, analysis of variance, latent growth curve modeling

Access to the complete content on Oxford Research Encyclopedia of Psychology requires a subscription or purchase. Public users are able to search the site and view the abstracts and keywords for each book and chapter without a subscription.

Please subscribe or login to access full text content.

If you have purchased a print title that contains an access token, please see the token for information about how to register your code.

For questions on access or troubleshooting, please check our FAQs, and if you can''t find the answer there, please contact us.