1-11 of 11 Results

  • Keywords: gene x
Clear all

Article

Joan O. Weiss

The recent explosion of genetic and genomic knowledge that was a product of the Human Genome Project has extraordinary implications for social workers and their client population. Genetics and genomics are interdisciplinary fields. Their scope reaches beyond the doctor’s office and beyond medical professionals. Social workers must recognize how vital their role is in helping clients come to terms with being at risk for a genetic condition or facing the uncertainty of a genetic diagnosis in the family. Understanding the psychosocial and ethical implications of genetic testing is important for all social workers, no matter where they are practicing. Social workers need to know the basics of genetics and genomics and take an active part in protecting their clients from genetic discrimination.

Article

Circadian rhythm is the approximately 24-hour rhythmicity that regulates physiology and behavior in a variety of organisms. The mammalian circadian system is organized in a hierarchical manner. Molecular circadian oscillations driven by genetic feedback loops are found in individual cells, whereas circadian rhythms in different systems of the body are orchestrated by the master clock in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. SCN receives photic input from retina and synchronizes endogenous rhythms with the external light/dark cycles. SCN regulates circadian rhythms in the peripheral oscillators via neural and humoral signals, which account for daily fluctuations of the physiological processes in these organs. Disruption of circadian rhythms can cause health problems and circadian dysfunction has been linked to many human diseases.

Article

Lily Yan, Laura Smale, and Antonio A. Nunez

Circadian rhythms are endogenous daily rhythms evident in behavior and physiology. In mammals, these rhythms are controlled by a hierarchical network of oscillators showing a coherent circadian coordination or coupling. The hypothalamic suprachiasmatic nucleus (SCN) sits on top of the hierarchy and coordinates the phase of oscillators in other brain regions and in peripheral organs, including endocrine glands. The phase of the SCN oscillator, in reference to the daily light-dark cycle, is identical across mammalian species regardless of whether they are most active during the day or night, that is, diurnal or nocturnal. However, the extra-SCN or peripheral oscillators are out of phase and are often reversed by 180° across diurnal and nocturnal mammals. In the endocrine system, with the notable exception of the pattern of pineal melatonin secretion, which features elevated levels at night regardless of the activity profile of the species, most endocrine rhythms show a 180° reversal when diurnal and nocturnal species are compared. There is also evidence of differences between nocturnal and diurnal species with respect to their rhythms in sensitivity or responsiveness to hormonal stimulation. One of the major unanswered questions in the field of comparative endocrinology relates to the mechanism responsible for the differential coupling in diurnal and nocturnal mammals of extra-SCN oscillators and overt circadian rhythms with the SCN oscillator and the light dark cycle. Viable hypotheses include species-specific switches from excitation to inhibition at key nodes between the SCN and its targets, the presence of extra-SCN signals that converge on SCN targets and reverse the outcome of SCN signals, and changes in oscillatory parameters between the oscillator of the SCN and those outside the SCN resulting in an anti-phase coupling among key oscillators.

Article

Development of the brain in the first 3 years of life is genetically programmed but occurs in response to environmental stimuli. The brain is organized “from the bottom up,” that is, from simpler to more complex structures and functions, so the experiences and environment that shape early development have consequences that reach far into the future. This entry describes the ontogeny and processes of fetal and infant brain development, as well as major risks to early brain development (during pregnancy and after birth), with emphasis on the factors seen in social-work practice. Neuroscience research is changing social work practice, and understanding early brain development and the contributors to poor development is critical for social workers in medical, mental health, child welfare, and other practice settings.

Article

Juha Merilä and Ary A. Hoffmann

Changing climatic conditions have both direct and indirect influences on abiotic and biotic processes and represent a potent source of novel selection pressures for adaptive evolution. In addition, climate change can impact evolution by altering patterns of hybridization, changing population size, and altering patterns of gene flow in landscapes. Given that scientific evidence for rapid evolutionary adaptation to spatial variation in abiotic and biotic environmental conditions—analogous to that seen in changes brought by climate change—is ubiquitous, ongoing climate change is expected to have large and widespread evolutionary impacts on wild populations. However, phenotypic plasticity, migration, and various kinds of genetic and ecological constraints can preclude organisms from evolving much in response to climate change, and generalizations about the rate and magnitude of expected responses are difficult to make for a number of reasons. First, the study of microevolutionary responses to climate change is a young field of investigation. While interest in evolutionary impacts of climate change goes back to early macroevolutionary (paleontological) studies focused on prehistoric climate changes, microevolutionary studies started only in the late 1980s. The discipline gained real momentum in the 2000s after the concept of climate change became of interest to the general public and funding organizations. As such, no general conclusions have yet emerged. Second, the complexity of biotic changes triggered by novel climatic conditions renders predictions about patterns and strength of natural selection difficult. Third, predictions are complicated also because the expression of genetic variability in traits of ecological importance varies with environmental conditions, affecting expected responses to climate-mediated selection. There are now several examples where organisms have evolved in response to selection pressures associated with climate change, including changes in the timing of life history events and in the ability to tolerate abiotic and biotic stresses arising from climate change. However, there are also many examples where expected selection responses have not been detected. This may be partly explainable by methodological difficulties involved with detecting genetic changes, but also by various processes constraining evolution. There are concerns that the rates of environmental changes are too fast to allow many, especially large and long-lived, organisms to maintain adaptedness. Theoretical studies suggest that maximal sustainable rates of evolutionary change are on the order of 0.1 haldanes (i.e., phenotypic standard deviations per generation) or less, whereas the rates expected under current climate change projections will often require faster adaptation. Hence, widespread maladaptation and extinctions are expected. These concerns are compounded by the expectation that the amount of genetic variation harbored by populations and available for selection will be reduced by habitat destruction and fragmentation caused by human activities, although in some cases this may be countered by hybridization. Rates of adaptation will also depend on patterns of gene flow and the steepness of climatic gradients. Theoretical studies also suggest that phenotypic plasticity (i.e., nongenetic phenotypic changes) can affect evolutionary genetic changes, but relevant empirical evidence is still scarce. While all of these factors point to a high level of uncertainty around evolutionary changes, it is nevertheless important to consider evolutionary resilience in enhancing the ability of organisms to adapt to climate change.

Article

Understanding of the brain mechanisms regulating reproductive behaviors in female laboratory animals has been aided greatly by our knowledge of estrogen receptors in the brain. Hypothalamic neurons that express the gene for estrogen receptor-alpha regulate activity in the neural circuit for the simplest female reproductive response, lordosis behavior. In turn, many of the neurotransmitter inputs to the critical hypothalamic neurons have been studied using electrophysiological and neurochemical techniques. The upshot of all of these studies is that lordosis behavior presents the best understood set of mechanisms for any mammalian behavior.

Article

Jason M. Fletcher

Two interrelated advances in genetics have occurred which have ushered in the growing field of genoeconomics. The first is a rapid expansion of so-called big data featuring genetic information collected from large population–based samples. The second is enhancements to computational and predictive power to aggregate small genetic effects across the genome into single summary measures called polygenic scores (PGSs). Together, these advances will be incorporated broadly with economic research, with strong possibilities for new insights and methodological techniques.

Article

Research in the psychology of language has been dogged by some enduring controversies, many of which continue to divide researchers. Furthermore, language research has been riven by too many dichotomies and too many people taking too extreme a position, and progress is only likely to be made when researchers recognize that language is a complex system where simple dichotomies may not be relevant. The enduring controversies cover the width of psycholinguistics, including the work of Chomsky and the nature of language, to what extent language is innately determined and the origin of language and how it evolved. Chomsky’s work has also influenced our conceptions of the modularity of the structure of the mind and the nature of psychological processing. Advances in the sophistication of brain imaging techniques have led to debate about exactly what these techniques can tell us about the psychological processing of language. There has also been much debate about whether psychological processing occurs through explicit rules or statistical mapping, a debate driven by connectionist modeling, deep learning, and techniques for the analysis of “big data.” Another debate concerns the role of prediction in language and cognition and the related issues of the relationship between language comprehension and language production. To what extent is language processing embodied, and how does it relate to controversies about “embedded cognition”? Finally, there has been debate about the purpose and use of language.

Article

Color is a central feature of human perceptual experience where it functions as a critical component in the detection, identification, evaluation, placement, and appreciation of objects in the visual world. Its role is significantly enhanced by the fact that humans evolved a dimension of color vision beyond that available to most other mammals. Many fellow primates followed a similar path and in recent years the basic mechanisms that support color vision—the opsin genes, photopigments, cone signals, and central processing—have been the subjects of hundreds of investigations. Because of the tight linkage between opsin gene structure and the spectral sensitivity of cone photopigments, it is possible to trace pathways along which color vision may have evolved in primates. In turn, such information allows the development of hypotheses about the nature of color vision and its utility in nonhuman primates. These hypotheses are being critically evaluated in field studies where primates solve visual problems in the presence of the full panoply of photic cues. The intent of this research is to determine which aspects of these cues are critically linked to color vision and how their presence facilitates, impedes, or fails to influence the solutions. These investigations are challenging undertakings and the emerging literature is replete with contradictory conclusions. But steady progress is being made and it appears that (a) some of the original ideas about there being a restricted number of tasks for which color vision might be optimally utilized by nonhuman primates (e. g., fruit harvest) were too simplistic and (b) depending on circumstances that can include both features of proximate visual stimuli (spectral cues, luminance cues, size cues, motion cues, overall light levels) and situational variables (social cues, developmental status, species-specific traits) the utilization of color vision by nonhuman primates is apt to be complex and varied.

Article

Human activities in the Anthropocene are influencing the twin processes of biodiversity generation and loss in complex ways that threaten the maintenance of biodiversity levels that underpin human well-being. Yet many scientists and practitioners still present a simplistic view of biodiversity as a static stock rather than one determined by a dynamic interplay of feedback processes that are affected by anthropogenic drivers. Biodiversity describes the variety of life on Earth, from the genes within an organism to the ecosystem level. However, this article focuses on variation among living organisms, both within and between species. Within species, biodiversity is reflected in genetic, and consequent phenotypic, variations among individuals. Genetic diversity is generated by germ line mutations, genetic recombination during sexual reproduction, and immigration of new genotypes into populations. Across species, biodiversity is reflected in the number of different species present and also, by some metrics, in the evenness of their relative abundance. At this level, biodiversity is generated by processes of speciation and immigration of new species into an area. Anthropogenic drivers affect all these biodiversity generation processes, while the levels of genetic diversity can feed back and affect the level of species diversity, and vice versa. Therefore, biodiversity maintenance is a complex balance of processes and the biodiversity levels at any point in time may not be at equilibrium. A major concern for humans is that our activities are driving rapid losses of biodiversity, which outweigh by orders of magnitude the processes of biodiversity generation. A wide range of species and genetic diversity could be necessary for the provision of ecosystem functions and services (e.g., in maintaining the nutrient cycling, plant productivity, pollination, and pest control that underpin crop production). The importance of biodiversity becomes particularly marked over longer time periods, and especially under varying environmental conditions. In terms of biodiversity losses, there are natural processes that cause roughly continuous, low-level losses, but there is also strong evidence from fossil records for transient events in which exceptionally large loss of biodiversity has occurred. These major extinction episodes are thought to have been caused by various large-scale environmental perturbations, such as volcanic eruptions, sea-level falls, climatic changes, and asteroid impacts. From all these events, biodiversity has shown recovery over subsequent calmer periods, although the composition of higher-level evolutionary taxa can be significantly altered. In the modern era, biodiversity appears to be undergoing another mass extinction event, driven by large-scale human impacts. The primary mechanisms of biodiversity loss caused by humans vary over time and by geographic region, but they include overexploitation, habitat loss, climate change, pollution (e.g., nitrogen deposition), and the introduction of non-native species. It is worth noting that human activities may also lead to increases in biodiversity in some areas through species introductions and climatic changes, although these overall increases in species richness may come at the cost of loss of native species, and with uncertain effects on ecosystem service delivery. Genetic diversity is also affected by human activities, with many examples of erosion of diversity through crop and livestock breeding or through the decline in abundance of wild species populations. Significant future challenges are to develop better ways to monitor the drivers of biodiversity loss and biodiversity levels themselves, making use of new technologies, and improving coverage across geographic regions and taxonomic scope. Rather than treating biodiversity as a simple stock at equilibrium, developing a deeper understanding of the complex interactions—both between environmental drivers and between genetic and species diversity—is essential to manage and maintain the benefits that biodiversity delivers to humans, as well as to safeguard the intrinsic value of the Earth’s biodiversity for future generations.

Article

Elisabeth Gidengil

Why voters turn out on Election Day has eluded a straightforward explanation. Rational choice theorists have proposed a parsimonious model, but its logical implication is that hardly anyone would vote since their one vote is unlikely to determine the election outcome. Attempts to save the rational choice model incorporate factors like the expressive benefits of voting, yet these modifications seem to be at odds with core assumptions of rational choice theory. Still, some people do weigh the expected costs and benefits of voting and take account of the closeness of the election when deciding whether or not to vote. Many more, though, vote out of a sense of civic duty. In contrast to the calculus of voting model, the civic voluntarism model focuses on the role of resources, political engagement, and to a lesser extent, recruitment in encouraging people to vote. It pays particular attention to the sources of these factors and traces complex paths among them. There are many other theories of why people vote in elections. Intergenerational transmission and education play central roles in the civic voluntarism models. Studies that link official voting records with census data provide persuasive evidence of the influence of parental turnout. Education is one of the best individual-level predictors of voter turnout, but critics charge that it is simply a proxy for pre-adult experiences within the home. Studies using equally sophisticated designs that mimic the logic of controlled experiments have reached contradictory conclusions about the association between education and turnout. Some of the most innovative work on voter turnout is exploring the role of genetic influences and personality traits, both of which have an element of heritability. This work is in its infancy, but it is likely that many genes shape the predisposition to vote and that they interact in complex ways with environmental influences. Few clear patterns have emerged in the association between personality and turnout. Finally, scholars are beginning to recognize the importance of exploring the connection between health and turnout.