1-8 of 8 Results

  • Keywords: cloud x
Clear all

Article

Julian Brimelow

Hail has been identified as the largest contributor to insured losses from thunderstorms globally, with losses costing the insurance industry billions of dollars each year. Yet, of all precipitation types, hail is probably subject to the largest uncertainties. Some might go so far as to argue that observing and forecasting hail is as difficult, if not more difficult, than is forecasting tornadoes. The reasons why hail is challenging are many and varied and reflected by the fact that hailstones display a wide variety of shapes, sizes and internal structures. There is also an important clue in this diversity—nature is telling us that hail can grow by following a wide variety of trajectories within thunderstorms, each having a unique set of conditions. It is because of this complexity that modeling hail growth and forecasting size is so challenging. Consequently, it is understandable that predicting the occurrence and size of hail seems an impossible task. Through persistence, ingenuity and technology, scientists have made progress in understanding the key ingredients and processes at play. Technological advances mean that we can now, with some confidence, identify those storms that very likely contain hail and even estimate the maximum expected hail size on the ground hours in advance. Even so, there is still much we need to learn about the many intriguing aspects of hail growth.

Article

Mineral dust is the most important natural aerosol type by mass, with northern Africa the most prominent source region worldwide. Dust particles are lifted into the atmosphere by strong winds over arid or semiarid soils through a range of emission mechanisms, the most important of which is saltation. Dust particles are mixed vertically by turbulent eddies in the desert boundary layer (up to 6km) or even higher by convective and frontal circulations. The meteorological systems that generate winds strong enough for dust mobilization cover scales from dust devils (~100m) to large dust outbreaks related to low- and high-pressure systems over subtropical northern Africa (thousands of kilometers) and include prominent atmospheric features such as the morning breakdown of low-level jets forming in the stable nighttime boundary layer and cold pools emanating from deep convective systems (so-called haboobs). Dust particles are transported in considerable amounts from northern Africa to remote regions such as the Americas and Europe. The removal of dust particles from the atmosphere occurs through gravitational settling, molecular and turbulent diffusion (dry deposition), as well as in-cloud and sub-cloud scavenging (wet deposition). Advances in satellite technology and numerical dust models (including operational weather prediction systems) have led to considerable progress in quantifying the temporal and spatial variability of dust from Africa, but large uncertainties remain for practically all stages of the dust cycle. The annual cycle of dustiness is dominated by the seasonal shift of rains associated with the West African monsoon and the Mediterranean storm track. In summer, maximum dust loadings are observed over Mauritania and Mali, and the main export is directed toward the Caribbean Sea, creating the so-called elevated Saharan Air Layer. In winter the northeasterly harmattan winds transport dust to the tropical Atlantic and across to southern America, usually in a shallower layer. Mineral dust has a multitude of impacts on climate and weather systems but also on humans (air pollution, visibility, erosion). Nutrients contained in dust fertilize marine and terrestrial ecosystems and therefore impact the global carbon cycle. Dust affects the energy budget directly through interactions with short- and long-wave radiation, with details depending crucially on particle size, shape, and chemical composition. Mineral dust particles are the most important ice-nuclei worldwide and can also serve as condensation nuclei in liquid clouds, but details are not well understood. The resulting modifications to cloud characteristics and precipitation can again affect the energy (and water) budget. Complicated responses and feedbacks on atmospheric dynamics are known, including impacts on regional-scale circulations, sea-surface temperatures, surface fluxes and boundary layer mixing, vertical stability, near-surface winds, soil moisture, and vegetation (and therefore again dust emission). A prominent example of such complex interactions is the anti-correlation between African dust and Atlantic hurricane activity from weekly to decadal timescales, the causes of which remain difficult to disentangle. Particularly in the early 21st century, research on African dust intensified substantially and became more interdisciplinary, leading to some significant advances in our understanding of this fascinating and multifaceted element of the Earth system.

Article

Bjørn H. Samset

Among the factors that affect the climate, few are as diverse and challenging to understand as aerosols. Minute particles suspended in the atmosphere, aerosols are emitted through a wide range of natural and industrial processes, and are transported around the globe by winds and weather. Once airborne, they affect the climate both directly, through scattering and absorption of solar radiation, and indirectly, through their impact on cloud properties. Combining all their effects, anthropogenic changes to aerosol concentrations are estimated to have had a climate impact over the industrial era that is second only to CO2. Their atmospheric lifetime of only a few days, however, makes their climate effects substantially different from those of well-mixed greenhouse gases. Major aerosol types include sea salt, dust, sulfate compounds, and black carbon—or soot—from incomplete combustion. Of these, most scatter incoming sunlight back to space, and thus mainly cool the climate. Black carbon, however, absorbs sunlight, and therefore acts as a heating agent much like a greenhouse gas. Furthermore, aerosols can act as cloud condensation nuclei, causing clouds to become whiter—and thus more reflecting—further cooling the surface. Black carbon is again a special case, acting to change the stability of the atmosphere through local heating of the upper air, and also changing the albedo of the surface when it is deposited on snow and ice, for example. The wide range of climate interactions that aerosols have, and the fact that their distribution depends on the weather at the time and location of emission, lead to large uncertainties in the scientific assessment of their impact. This in turn leads to uncertainties in our present understanding of the climate sensitivity, because while aerosols have predominantly acted to oppose 20th-century global warming by greenhouse gases, the magnitude of aerosol effects on climate is highly uncertain. Finally, aerosols are important for large-scale climate events such as major volcanoes, or the threat of nuclear winter. The relative ease with which they can be produced and distributed has led to suggestions for using targeted aerosol emissions to counteract global warming—so-called climate engineering.

Article

Aerosols (tiny solid or liquid particles suspended in the atmosphere) have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). ARIs arise from aerosol scattering and absorption, which alter the radiation budgets of the atmosphere and surface, while ACIs are connected to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARIs and ACIs are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornadoes). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered the ability to project future climate changes and make accurate numerical weather predictions.

Article

The planetary boundary layer of Mars is a crucial component of the Martian climate and meteorology, as well as a key driver of the surface-atmosphere exchanges on Mars. As such, it is explored by several landers and orbiters; high-resolution atmospheric modeling is used to interpret the measurements by those spacecrafts. The planetary boundary layer of Mars is particularly influenced by the strong radiative control of the Martian surface and, as a result, features a more extreme version of planetary boundary layer phenomena occurring on Earth. In daytime, the Martian planetary boundary layer is highly turbulent, mixing heat and momentum in the atmosphere up to about 10 kilometers from the surface. Daytime convective turbulence is organized as convective cells and vortices, the latter giving rise to numerous dust devils when dust is lifted and transported in the vortex. The nighttime planetary boundary layer is dominated by stable-layer turbulence, which is much less intense than in the daytime, and slope winds in regions characterized by uneven topography. Clouds and fogs are associated with the planetary boundary layer activity on Mars.

Article

George J. Flynn

Scattered sunlight from interplanetary dust particles, mostly produced by comets and asteroids, orbiting the Sun are visible at dusk or dawn as the Zodiacal Cloud. Impacts onto the space-exposed surfaces of Earth-orbiting satellites indicate that, in the current era, thousands of tons of interplanetary dust enters the Earth’s atmosphere every year. Some particles vaporize forming meteors while others survive atmospheric deceleration and settle to the surface of the Earth. NASA has collected interplanetary dust particles from the Earth’s stratosphere using high-altitude aircraft since the mid-1970s. Detailed characterization of these particles shows that some are unique samples of Solar System and presolar material, never affected by the aqueous and thermal processing that overprints the record of formation from the Solar Protoplanetary Disk in the meteorites. These particles preserve the record of grain and dust formation from the disk. This record suggests that many of the crystalline minerals, dominated by crystalline silicates (olivine and pyroxene) and Fe-sulfides, condensed from gas in the inner Solar System and were then transported outward to the colder outer Solar System where carbon-bearing ices condensed on the surfaces of the grains. Irradiation by solar ultraviolet light and cosmic rays produced thin organic coatings on the grain surfaces that likely aided in grain sticking, forming the first dust particles of the Solar System. This continuous, planet-wide rain of interplanetary dust particles can be monitored by the accumulation of 3He, implanted into the interplanetary dust particles by the Solar Wind while they were in space, in oceanic sediments. The interplanetary dust, which is rich in organic carbon, may have contributed important pre-biotic organic matter important to the development of life to the surface of the early Earth.

Article

Sumit Sharma, Liliana Nunez, and Veerabhadran Ramanathan

Atmospheric brown clouds (ABCs) are widespread pollution clouds that can at times span an entire continent or an ocean basin. ABCs extend vertically from the ground upward to as high as 3 km, and they consist of both aerosols and gases. ABCs consist of anthropogenic aerosols such as sulfates, nitrates, organics, and black carbon and natural dust aerosols. Gaseous pollutants that contribute to the formation of ABCs are NOx (nitrogen oxides), SOx (sulfur oxides), VOCs (volatile organic compounds), CO (carbon monoxide), CH4 (methane), and O3 (ozone). The brownish color of the cloud (which is visible when looking at the horizon) is due to absorption of solar radiation at short wavelengths (green, blue, and UV) by organic and black carbon aerosols as well as by NOx. While the local nature of ABCs around polluted cities has been known since the early 1900s, the widespread transoceanic and transcontinental nature of ABCs as well as their large-scale effects on climate, hydrological cycle, and agriculture were discovered inadvertently by The Indian Ocean Experiment (INDOEX), an international experiment conducted in the 1990s over the Indian Ocean. A major discovery of INDOEX was that ABCs caused drastic dimming at the surface. The magnitude of the dimming was as large as 10–20% (based on a monthly average) over vast areas of land and ocean regions. The dimming was shown to be accompanied by significant atmospheric absorption of solar radiation by black and brown carbon (a form of organic carbon). Black and brown carbon, ozone and methane contribute as much as 40% to anthropogenic radiative forcing. The dimming by sulfates, nitrates, and carbonaceous (black and organic carbon) species has been shown to disrupt and weaken the monsoon circulation over southern Asia. In addition, the ozone in ABCs leads to a significant decrease in agriculture yields (by as much as 20–40%) in the polluted regions. Most significantly, the aerosols (in ABCs) near the ground lead to about 4 million premature mortalities every year. Technological and regulatory measures are available to mitigate most of the pollution resulting from ABCs. The importance of ABCs to global environmental problems led the United Nations Environment Programme (UNEP) to form the international ABC program. This ABC program subsequently led to the identification of short-lived climate pollutants as potent mitigation agents of climate change, and in recognition, UNEP formed the Climate and Clean Air Coalition to deal with these pollutants.

Article

Sean B. Eom

A decision support system is an interactive human–computer decision-making system that supports decision makers rather than replaces them, utilizing data and models. It solves unstructured and semi-structured problems with a focus on effectiveness rather than efficiency in decision processes. In the early 1970s, scholars in this field began to recognize the important roles that decision support systems (DSS) play in supporting managers in their semi-structured or unstructured decision-making activities. Over the past five decades, DSS has made progress toward becoming a solid academic field. Nevertheless, since the mid-1990s, the inability of DSS to fully satisfy a wide range of information needs of practitioners provided an impetus for a new breed of DSS, business intelligence systems (BIS). The academic discipline of DSS has undergone numerous changes in technological environments including the adoption of data warehouses. Until the late 1990s, most textbooks referred to “decision support systems.” Nowadays, many of them have replaced “decision support systems” with “business intelligence.” While DSS/BIS began in academia and were quickly adopted in business, in recent years these tools have moved into government and the academic field of public administration. In addition, modern political campaigns, especially at the national level, are based on data analytics and the use of big data analytics. The first section of this article reviews the development of DSS as an academic discipline. The second section discusses BIS and their components (the data warehousing environment and the analytical environment). The final section introduces two emerging topics in DSS/BIS: big data analytics and cloud computing analytics. Before the era of big data, most data collected by business organizations could easily be managed by traditional relational database management systems with a serial processing system. Social networks, e-business networks, Internet of Things (IoT), and many other wireless sensor networks are generating huge volumes of data every day. The challenge of big data has demanded a new business intelligence infrastructure with new tools (Hadoop cluster, the data warehousing environment, and the business analytical environment).