1-3 of 3 Results

  • Keywords: convective storm x
Clear all

Article

Cumulus clouds are pervasive on earth, and play important roles in the transfer of energy through the atmosphere. Under certain conditions, shallow, nonprecipitating cumuli may grow vertically to occupy a significant depth of the troposphere, and subsequently may evolve into convective storms. The qualifier “convective” implies that the storms have vertical accelerations that are driven primarily, though not exclusively, by buoyancy over a deep layer. Such buoyancy in the atmosphere arises from local density variations relative to some base state density; the base state is typically idealized as a horizontal average over a large area, which is also considered the environment. Quantifications of atmospheric buoyancy are typically expressed in terms of temperature and humidity, and allow for an assessment of the likelihood that convective clouds will form or initiate. Convection initiation is intimately linked to existence of a mechanism by which air is vertically lifted to realize this buoyancy and thus accelerations. Weather fronts and orography are the canonical lifting mechanisms. As modulated by an ambient or environmental distribution of temperature, humidity, and wind, weather fronts also facilitate the transition of convective clouds into storms with locally heavy rain, lightning, and other possible hazards. For example, in an environment characterized by winds that are weak and change little with distance above the ground, the storms tend to be short lived and benign. The structure of the vertical drafts and other internal storm processes under weak wind shear—i.e., a small change in the horizontal wind over some vertical distance—are distinct relative to those when the environmental wind shear is strong. In particular, strong wind shear in combination with large buoyancy favors the development of squall lines and supercells, both of which are highly coherent storm types. Besides having durations that may exceed a few hours, both of these storm types tend to be particularly hazardous: squall lines are most apt to generate swaths of damaging “straight-line” winds, and supercells spawn the most intense tornadoes and are responsible for the largest hail. Methods used to predict convective-storm hazards capitalize on this knowledge of storm formation and development.

Article

Charles A. Doswell III

Convective storms are the result of a disequilibrium created by solar heating in the presence of abundant low-level moisture, resulting in the development of buoyancy in ascending air. Buoyancy typically is measured by the Convective Available Potential Energy (CAPE) associated with air parcels. When CAPE is present in an environment with strong vertical wind shear (winds changing speed and/or direction with height), convective storms become increasingly organized and more likely to produce hazardous weather: strong winds, large hail, heavy precipitation, and tornadoes. Because of their associated hazards and their impact on society, in some nations (notably, the United States), there arose a need to have forecasts of convective storms. Pre-20th-century efforts to forecast the weather were hampered by a lack of timely weather observations and by the mathematical impossibility of direct solution of the equations governing the weather. The first severe convective storm forecaster was J. P. Finley, who was an Army officer, and he was ordered to cease his efforts at forecasting in 1887. Some Europeans like Alfred Wegener studied tornadoes as a research topic, but there was no effort to develop convective storm forecasting. World War II aircraft observations led to the recognition of limited storm science in the topic of convective storms, leading to a research program called the Thunderstorm Product that concentrated diverse observing systems to learn more about the structure and evolution of convective storms. Two Air Force officers, E. J. Fawbush and R. C. Miller, issued the first tornado forecasts in the modern era, and by 1953 the U.S. Weather Bureau formed a Severe Local Storms forecasting unit (SELS, now designated the Storm Prediction Center of the National Weather Service). From the outset of the forecasting efforts, it was evident that more convective storm research was needed. SELS had an affiliated research unit called the National Severe Storms Project, which became the National Severe Storms Laboratory in 1963. Thus, research and operational forecasting have been partners from the outset of the forecasting efforts in the United States—with major scientific contributions from the late T. T. Fujita (originally from Japan), K. A. Browning (from the United Kingdom), R. A. Maddox, J. M. Fritsch, C. F. Chappell, J. B. Klemp, L. R. Lemon, R. B. Wilhelmson, R. Rotunno, M. Weisman, and numerous others. This has resulted in the growth of considerable scientific understanding about convective storms, feeding back into the improvement in convective storm forecasting since it began in the modern era. In Europe, interest in both convective storm forecasting and research has produced a European Severe Storms Laboratory and an experimental severe convective storm forecasting group. The development of computers in World War II created the ability to make numerical simulations of convective storms and numerical weather forecast models. These have been major elements in the growth of both understanding and forecast accuracy. This will continue indefinitely.

Article

Aitor Anduaga

A typhoon is a highly organized storm system that develops from initial cyclone eddies and matures by sucking up from the warm tropical oceans large quantities of water vapor that condense at higher altitudes. This latent heat of condensation is the prime source of energy supply that strengthens the typhoon as it progresses across the Pacific Ocean. A typhoon differs from other tropical cyclones only on the basis of location. While hurricanes form in the Atlantic Ocean and eastern North Pacific Ocean, typhoons develop in the western North Pacific around the Philippines, Japan, and China. Because of their violent histories with strong winds and torrential rains and their impact on society, the countries that ring the North Pacific basin—China, Japan, Korea, the Philippines, and Taiwan—all often felt the need for producing typhoon forecasts and establishing storm warning services. Typhoon accounts in the pre-instrumental era were normally limited to descriptions of damage and incidences, and subsequent studies were hampered by the impossibility of solving the equations governing the weather, as they are distinctly nonlinear. The world’s first typhoon forecast was made in 1879 by Fr. Federico Faura, who was a Jesuit scientist from the Manila Observatory. His brethren from the Zikawei Jesuit Observatory, Fr. Marc Dechevrens, first reconstructed the trajectory of a typhoon in 1879, a study that marked the beginning of an era. The Jesuits and other Europeans like William Doberck studied typhoons as a research topic, and their achievements are regarded as products of colonial meteorology. Between the First and Second World Wars, there were important contributions to typhoon science by meteorologists in the Philippines (Ch. Deppermann, M. Selga, and J. Coronas), China (E. Gherzi), and Japan (T. Okada, and Y. Horiguti). The polar front theory developed by the Bergen School in Norway played an important role in creating the large-scale setting for tropical cyclones. Deppermann became the greatest exponent of the polar front theory and air-masses analysis in the Far East and Southeast Asia. From the end of WWII, it became evident that more effective typhoon forecasts were needed to meet military demands. In Hawaii, a joint Navy and Air Force center for typhoon analysis and forecasting was established in 1959—the Joint Typhoon Warning Center (JTWC). Its goals were to publish annual typhoon summaries and conduct research into tropical cyclone forecasting and detection. Other centers had previously specialized in issuing typhoon warnings and analysis. Thus, research and operational forecasting went hand in hand not only in the American JTWC but also in China (the Hong Kong Observatory, the Macao Meteorological and Geophysical Bureau), Japan (the Regional Specialized Meteorological Center), and the Philippines (Atmospheric, Geophysical and Astronomical Service Administration [PAGASA]). These efforts produced more precise scientific knowledge about the formation, structure, and movement of typhoons. In the 1970s and the 1980s, three new tools for research—three-dimensional numerical cloud models, Doppler radar, and geosynchronous satellite imagery—provided a new observational and dynamical perspective on tropical cyclones. The development of modern computing systems has offered the possibility of making numerical weather forecast models and simulations of tropical cyclones. However, typhoons are not mechanical artifacts, and forecasting their track and intensity remains an uncertain science.