1-20 of 87 Results

  • Keywords: hazards x
Clear all

Article

Brenden Jongman, Hessel C. Winsemius, Stuart A. Fraser, Sanne Muis, and Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.

Article

Sarah E. Scales, Julia Massi, and Jennifer A. Horney

Climate change is affecting every region of the world and is accelerating at an alarming rate. International efforts for mitigating climate change, like the Paris Agreement, through reductions in greenhouse gases are vital for slowing the global increase in temperatures. However, these mitigation measures will not have immediate impact, so urgent action is needed to address negative impacts currently posed by climate change. Adaptation measures are central to this response now, and will continue to be critical for protecting human health as temperatures rise and climate-related disasters increase in both frequency and severity. To maximize the effectiveness of adaptation measures, the health impacts of disasters should be well-characterized at the global, regional, national, and local levels. Surveillance and early warning systems are vital tools for early identification and warning of hazards and their potential impacts. Increasing global capacity to identify causes of morbidity and mortality directly and indirectly attributable to disasters are in line with the objectives of the Sustainable Development Goals and Bangkok Principles of the Sendai Framework for Disaster Risk Reduction. Both improving data collected in disaster settings and more effectively using that information in real time are central to reducing the human-health impacts of disasters. The human-health impacts of climate change and associated disasters are interrelated. Climate change and commensurate changes in environmental suitability, vector viability, and human migration strongly influence the prevalence and seasonality of infectious and communicable diseases. Both drought and flood contribute to food and water insecurity, leading to a higher prevalence of undernourishment and malnourishment, especially in children. Compromised nutritional status, in conjunction with resulting human migration, leave individuals immunocompromised and populations at a high risk for spread of infectious disease. Extreme heat exposure likewise compromises individuals’ ability to regulate their physiological response to external stressors. Disasters of all classifications can result in exposure to environmental hazards, decrease air quality, and negatively affect mental health. Accordingly, health adaptation measures to climate change must be equally interrelated, addressing needs across disciplines, at both individual and community levels, and incorporating the many facets of the health needs of affected populations.

Article

Daniel P. Aldrich, Michelle A. Meyer, and Courtney M. Page-Tan

The impact of disasters continues to grow in the early 21st century, as extreme weather events become more frequent and population density in vulnerable coastal and inland cities increases. Against this backdrop of risk, decision-makers persist in focusing primarily on structural measures to reduce losses centered on physical infrastructure such as berms, seawalls, retrofitted buildings, and levees. Yet a growing body of research emphasizes that strengthening social infrastructure, not just physical infrastructure, serves as a cost-effective way to improve the ability of communities to withstand and rebound from disasters. Three distinct kinds of social connections, including bonding, bridging, and linking social ties, support resilience through increasing the provision of emergency information, mutual aid, and collective action within communities to address natural hazards before, during, and after disaster events. Investing in social capital fosters community resilience that transcends natural hazards and positively affects collective governance and community health. Social capital has a long history in social science research and scholarship, particularly in how it has grown within various disciplines. Broadly, the term describes how social ties generate norms of reciprocity and trust, allow collective action, build solidarity, and foster information and resource flows among people. From education to crime, social capital has been shown to have positive impacts on individual and community outcomes, and research in natural hazards has similarly shown positive outcomes for individual and community resilience. Social capital also can foster negative outcomes, including exclusionary practices, corruption, and increased inequality. Understanding which types of social capital are most useful for increasing resilience is important to move the natural hazards field forward. Many questions about social capital and natural hazards remain, at best, partially answered. Do different types of social capital matter at different stages of disaster—e.g., mitigation, preparedness, response, and recovery? How do social capital’s effects vary across cultural contexts and stratified groups? What measures of social capital are available to practitioners and scholars? What actions are available to decision-makers seeking to invest in the social infrastructure of communities vulnerable to natural hazards? Which programs and interventions have shown merit through field tests? What outcomes can decision-makers anticipate with these investments? Where can scholars find data sets on resilience and social capital? The current state of knowledge about social capital in disaster resilience provides guidance about supporting communities toward more resilience.

Article

Simon Allen, Holger Frey, Wilfried Haeberli, Christian Huggel, Marta Chiarle, and Marten Geertsema

Glacier and permafrost hazards in cold mountain regions encompass various flood and mass movement processes that are strongly affected by rapid and cumulative climate-induced changes in the alpine cryosphere. These processes are characterized by a range of spatial and temporal dimensions, from small volume icefalls and rockfalls that present a frequent but localized danger to less frequent but large magnitude process chains that can threaten people and infrastructure located far downstream. Glacial lake outburst floods (GLOFs) have proven particularly devastating, accounting for the most far-reaching disasters in high mountain regions globally. Comprehensive assessments of glacier and permafrost hazards define two core components (or outcomes): 1. Susceptibility and stability assessment: Identifies likelihood and origin of an event based on analyses of wide-ranging triggering and conditioning factors driven by interlinking atmospheric, cryospheric, geological, geomorphological, and hydrological processes. 2. Hazard mapping: Identifies the potential impact on downslope and downstream areas through a combination of process modeling and field mapping that provides the scientific basis for decision making and planning. Glacier and permafrost hazards gained prominence around the mid-20th century, especially following a series of major disasters in the Peruvian Andes, Alaska, and the Swiss Alps. At that time, related hazard assessments were reactionary and event-focused, aiming to understand the causes of the disasters and to reduce ongoing threats to communities. These disasters and others that followed, such as Kolka Karmadon in 2002, established the fundamental need to consider complex geosystems and cascading processes with their cumulative downstream impacts as one of the distinguishing principles of integrative glacier and permafrost hazard assessment. The widespread availability of satellite imagery enables a preemptive approach to hazard assessment, beginning with regional scale first-order susceptibility and hazard assessment and modeling that provide a first indication of possible unstable slopes or dangerous lakes and related cascading processes. Detailed field investigations and scenario-based hazard mapping can then be targeted to high-priority areas. In view of the rapidly changing mountain environment, leading beyond historical precedence, there is a clear need for future-oriented scenarios to be integrated into the hazard assessment that consider, for example, the threat from new lakes that are projected to emerge in a deglaciating landscape. In particular, low-probability events with extreme magnitudes are a challenge for authorities to plan for, but such events can be appropriately considered as a worst-case scenario in a comprehensive, forward-looking, multiscenario hazard assessment.

Article

The field of natural hazards governance has changed substantially since the 1970s as the breadth and severity of natural hazards have grown. These changes have been driven by greater social scientific knowledge around natural hazards and disasters, and by changes in structure of natural hazards governance. The governance of issues relating to natural hazards is challenging because of the considerable complexity inherent in preparing for, responding to, mitigating, or recovering from disasters.

Article

As with countless other policy areas, natural hazard policy can be viewed as a jurisdictional competition between executive and legislative branches. While policymaking supremacy is delegated to the legislative branch in constitutional democracies, the power over implementation, budgeting, and grant-making that executive agencies enjoy means that the executive branch wields considerable influence over outcomes in natural hazards policymaking. The rules that govern federal implementation of complex legislative policies put the implementing agency at the center of influence over how policy priorities play out in local, county, and state processes before, during, and after disasters hit. Examples abound related to this give-and-take between the legislative and executive functions of government within the hazards and disaster realm, but none more telling than the changes made to US disaster policy after September 11th, which profoundly affected natural hazards policy as well as security policy. The competition and potential for mismatch between legislative and executive priorities has been heightened since the Federal Emergency Management Agency (FEMA) was reorganized under the Department of Homeland Security. While this may appear uniquely American, the primacy of terrorism and other security-related threats not only dwarfs natural hazards issues in the United States, but also globally. Among the most professionalized and powerful natural hazards and disaster agencies prior to 9/11, FEMA has seen its influence diminished and its access to decision-makers reduced. This picture of legislative and executive actors within the natural hazards policy domain who compete for supremacy goes beyond the role of FEMA and post-9/11 policy. Power dynamics associated with budgets, oversight and accountability, and relative power among executive agencies are ongoing issues important to understanding the competition for policy influence as natural hazards policy competes for attention, funding, and power within the broader domain of all-hazards policy.

Article

Philipp Schmidt-Thomé

Climate change adaptation is the ability of a society or a natural system to adjust to the (changing) conditions that support life in a certain climate region, including weather extremes in that region. The current discussion on climate change adaptation began in the 1990s, with the publication of the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Since the beginning of the 21st century, most countries, and many regions and municipalities have started to develop and implement climate change adaptation strategies and plans. But since the implementation of adaptation measures must be planned and conducted at the local level, a major challenge is to actually implement adaptation to climate change in practice. One challenge is that scientific results are mainly published on international or national levels, and political guidelines are written at transnational (e.g., European Union), national, or regional levels—these scientific results must be downscaled, interpreted, and adapted to local municipal or community levels. Needless to say, the challenges for implementation are also rooted in a large number of uncertainties, from long time spans to matters of scale, as well as in economic, political, and social interests. From a human perspective, climate change impacts occur rather slowly, while local decision makers are engaged with daily business over much shorter time spans. Among the obstacles to implementing adaptation measures to climate change are three major groups of uncertainties: (a) the uncertainties surrounding the development of our future climate, which include the exact climate sensitivity of anthropogenic greenhouse gas emissions, the reliability of emission scenarios and underlying storylines, and inherent uncertainties in climate models; (b) uncertainties about anthropogenically induced climate change impacts (e.g., long-term sea level changes, changing weather patterns, and extreme events); and (c) uncertainties about the future development of socioeconomic and political structures as well as legislative frameworks. Besides slow changes, such as changing sea levels and vegetation zones, extreme events (natural hazards) are a factor of major importance. Many societies and their socioeconomic systems are not properly adapted to their current climate zones (e.g., intensive agriculture in dry zones) or to extreme events (e.g., housing built in flood-prone areas). Adaptation measures can be successful only by gaining common societal agreement on their necessity and overall benefit. Ideally, climate change adaptation measures are combined with disaster risk reduction measures to enhance resilience on short, medium, and long time scales. The role of uncertainties and time horizons is addressed by developing climate change adaptation measures on community level and in close cooperation with local actors and stakeholders, focusing on strengthening resilience by addressing current and emerging vulnerability patterns. Successful adaptation measures are usually achieved by developing “no-regret” measures, in other words—measures that have at least one function of immediate social and/or economic benefit as well as long-term, future benefits. To identify socially acceptable and financially viable adaptation measures successfully, it is useful to employ participatory tools that give all involved parties and decision makers the possibility to engage in the process of identifying adaptation measures that best fit collective needs.

Article

Glacier retreat is considered to be one of the most obvious manifestations of recent and ongoing climate change in the majority of glacierized alpine and high-latitude regions throughout the world. Glacier retreat itself is both directly and indirectly connected to the various interrelated geomorphological/hydrological processes and changes in hydrological regimes. Various types of slope movements and the formation and evolution of lakes are observed in recently deglaciated areas. These are most commonly glacial lakes (ice-dammed, bedrock-dammed, or moraine-dammed lakes). “Glacial lake outburst flood” (GLOF) is a phrase used to describe a sudden release of a significant amount of water retained in a glacial lake, irrespective of the cause. GLOFs are characterized by extreme peak discharges, often several times in excess of the maximum discharges of hydrometeorologically induced floods, with an exceptional erosion/transport potential; therefore, they can turn into flow-type movements (e.g., GLOF-induced debris flows). Some of the Late Pleistocene lake outburst floods are ranked among the largest reconstructed floods, with peak discharges of up to 107 m3/s and significant continental-scale geomorphic impacts. They are also considered capable of influencing global climate by releasing extremely high amounts of cold freshwater into the ocean. Lake outburst floods associated with recent (i.e., post-Little Ice Age) glacier retreat have become a widely studied topic from the perspective of the hazards and risks they pose to human society, and the possibility that they are driven by anthropogenic climate change. Despite apparent regional differences in triggers (causes) and subsequent mechanisms of lake outburst floods, rapid slope movement into lakes, producing displacement waves leading to dam overtopping and eventually dam failure, is documented most frequently, being directly (ice avalanche) and indirectly (slope movement in recently deglaciated areas) related to glacial activity and glacier retreat. Glacier retreat and the occurrence of GLOFs are, therefore, closely tied, because glacier retreat is connected to: (a) the formation of new, and the evolution of existing, lakes; and (b) triggers of lake outburst floods (slope movements).

Article

Vincenzo Bollettino, Tilly Alcayna, Philip Dy, and Patrick Vinck

In recent years, the notion of resilience has grown into an important concept for both scholars and practitioners working on disasters. This evolution reflects a growing interest from diverse disciplines in a holistic understanding of complex systems, including how societies interact with their environment. This new lens offers an opportunity to focus on communities’ ability to prepare for and adapt to the challenges posed by natural hazards, and the mechanism they have developed to cope and adapt to threats. This is important because repeated stresses and shocks still cause serious damages to communities across the world, despite efforts to better prepare for disasters. Scholars from a variety of disciplines have developed resilience frameworks both to guide macro-level policy decisions about where to invest in preparedness and to measure which systems perform best in limiting losses from disasters and ensuring rapid recovery. Yet there are competing conceptions of what resilience encompasses and how best to measure it. While there is a significant amount of scholarship produced on resilience, the lack of a shared understanding of its conceptual boundaries and means of measurement make it difficult to demonstrate the results or impact of resilience programs. If resilience is to emerge as a concept capable of aiding decision-makers in identifying socio-geographical areas of vulnerability and improving preparedness, then scholars and practitioners need to adopt a common lexicon on the different elements of the concept and harmonize understandings of the relationships amongst them and means of measuring them. This article reviews the origins and evolution of resilience as an interdisciplinary, conceptual umbrella term for efforts by different disciplines to tackle complex problems arising from more frequent natural disasters. It concludes that resilience is a useful concept for bridging different academic disciplines focused on this complex problem set, while acknowledging that specific measures of resilience will differ as different units and levels of analysis are employed to measure disparate research questions.

Article

James Goff

How big, how often, and where from? This is almost a mantra for researchers trying to understand tsunami hazard and risk. What we do know is that events such as the 2004 Indian Ocean Tsunami (2004 IOT) caught scientists by surprise, largely because there was no “research memory” of past events for that region, and as such, there was no hazard awareness, no planning, no risk assessment, and no disaster risk reduction. Forewarned is forearmed, but to be in that position, we have to be able to understand the evidence left behind by past events—palaeootsunamis—and to have at least some inkling of what generated them. While the 2004 IOT was a devastating wake-up call for science, we need to bear in mind that palaeotsunami research was still in its infancy at the time. What we now see is still a comparatively new discipline that is practiced worldwide, but as the “new kid on the block,” there are still many unknowns. What we do know is that in many cases, there is clear evidence of multiple palaeotsunamis generated by a variety of source mechanisms. There is a suite of proxy data—a toolbox, if you will—that can be used to identify a palaeotsunami deposit in the sedimentary record. Things are never quite as simple as they sound, though, and there are strong divisions within the research community as to whether one can really differentiate between a palaeotsunami and a palaeostorm deposit, and whether proxies as such are the way to go. As the discipline matures, though, many of these issues are being resolved, and indeed we have now arrived at a point where we have the potential to detect “invisible deposits” laid down by palaeotsunamis once they have run out of sediment to lay down as they move inland. As such, we are on the brink of being able to better understand the full extent of inundation by past events, a valuable tool in gauging the magnitude of palaeotsunamis. Palaeotsunami research is multidisciplinary, and as such, it is a melting pot of different scientific perspectives, which leads to rapid innovations. Basically, whatever is associated with modern events may be reflected in prehistory. Also, palaeotsunamis are often part of a landscape response pushed beyond an environmental threshold from which it will never fully recover, but that leaves indelible markers for us to read. In some cases, we do not even need to find a palaeotsunami deposit to know that one happened.

Article

Space weather is a collective term for different solar or space phenomena that can detrimentally affect technology. However, current understanding of space weather hazards is still relatively embryonic in comparison to terrestrial natural hazards such as hurricanes, earthquakes, or tsunamis. Indeed, certain types of space weather such as large Coronal Mass Ejections (CMEs) are an archetypal example of a low-probability, high-severity hazard. Few major events, short time-series data, and the lack of consensus regarding the potential impacts on critical infrastructure have hampered the economic impact assessment of space weather. Yet, space weather has the potential to disrupt a wide range of Critical National Infrastructure (CNI) systems including electricity transmission, satellite communications and positioning, aviation, and rail transportation. In the early 21st century, there has been growing interest in these potential economic and societal impacts. Estimates range from millions of dollars of equipment damage from the Quebec 1989 event, to some analysts asserting that losses will be in the billions of dollars in the wider economy from potential future disaster scenarios. Hence, the origin and development of the socioeconomic evaluation of space weather is tracked, from 1989 to 2017, and future research directions for the field are articulated. Since 1989, many economic analyzes of space weather hazards have often completely overlooked the physical impacts on infrastructure assets and the topology of different infrastructure networks. Moreover, too many studies have relied on qualitative assumptions about the vulnerability of CNI. By modeling both the vulnerability of critical infrastructure and the socioeconomic impacts of failure, the total potential impacts of space weather can be estimated, providing vital information for decision makers in government and industry. Efforts on this subject have historically been relatively piecemeal, which has led to little exploration of model sensitivities, particularly in relation to different assumption sets about infrastructure failure and restoration. Improvements may be expedited in this research area by open-sourcing model code, increasing the existing level of data sharing, and improving multidisciplinary research collaborations between scientists, engineers, and economists.

Article

Ann Bostrom

Mental models of health risks are the causal beliefs that comprise one’s inference engines for the interpretation and prediction of health and illness experiences and messages. Mental models of health risks can be parsed into a handful of common elements, including beliefs about causes, consequences, and cures as well as identifying information such as symptoms and timing. Mental models research deriving from a risk and decision analysis framework emphasizes exposure sources and pathways as part of causal thinking as well as how interventions may reduce or increase the risk. Mental models can be developed as a function of one’s goals or the problem in a specific context, rather than as coherent, stable knowledge structures in long-term memory. For this reason they can be piecemeal and inconsistent in the absence of expertise or experience with the risk. Derived often by analogy with more familiar risks, mental models of health risks can lead to effective health behaviors but also to costly inaction or misplaced action. Assessing mental models of hazardous processes can contribute to the design of effective risk communications by identifying the concrete information message recipients need to cope with health risks, thereby making or strengthening common-sense links between risk and action representations. Although a wide variety of research methods are used to investigate mental models, achieving this level of specificity requires attention to substantive details. Researchers are beginning to better understand the interactions between mental models of risk and their social, cultural, and physical contexts, but much remains to explore.

Article

Hans von Storch, Katja Fennel, Jürgen Jensen, Kristy A. Lewis, Beate Ratter, Torsten Schlurmann, Thomas Wahl, and Wenyan Zhang

Coasts are those regions of the world where the land has an impact on the state of the sea, and that part of the land is in turn affected by the sea. This land–sea interaction may take various forms—geophysical, biological, chemical, sociocultural, and economic. Coasts are conditioned by specific regional conditions. These unique characteristics result, in heavily fragmented regional and disciplinary research agendas, among them geographers, meteorologists, oceanographers, coastal engineers, and a variety of social and cultural sciences. Coasts are regions where the effects and risks of climate impact societal and ecological life. Such occurrences as coastal flooding, storms, saltwater intrusion, invasive species, declining fish stocks, and coastal retreat and morphological change are challenging natural resource managers and local governments to mitigate these impacts. Societies are confronted with the challenge of dealing with these changes and hazards by developing appropriate cultural practices and technical measures. Key aspects and concepts of these dimensions are presented here and will be examined in more detail in the future to expand on their characteristics and significance.

Article

Storytelling is a common and pervasive practice across human history, which some have argued is a fundamental part of human understanding. Storytelling and narratives are a very human way of understanding the world, as well as events, and can serve as key tools for crisis and disaster studies and practice. They play a tremendously important role in planning, policy, education, the public sphere, advocacy, training, and community recovery. In the context of crises and disasters, stories are a means by which information is transmitted across generations, a key strategy for survival from non-routine and infrequent events. In fact, the field of disaster studies has long relied on narratives as primary source material, as a means of understanding individual experiences of phenomena as well as critiquing policies and understanding the role of history in 21st-century levels of vulnerability. Over the past several decades, practitioners and educators in the field have sought to use stories and narratives more purposefully to build resilience and pass on tacit knowledge.

Article

Dewald van Niekerk and Livhuwani David Nemakonde

The sub-Saharan Africa (SSA) region, along with the rest of the African continent, is prone to a wide variety of natural hazards. Most of these hazards and the associated disasters are relatively silent and insidious, encroaching on life and livelihoods, increasing social, economic, and environmental vulnerability even to moderate events. With the majority of SSA’s disasters being of hydrometeorological origin, climate change through an increase in the frequency and magnitude of extreme weather events is likely to exacerbate the situation. Whereas a number of countries in SSA face significant governance challenges to effectively respond to disasters and manage risk reduction measures, considerable progress has been made since the early 2000s in terms of policies, strategies, and/or institutional mechanisms to advance disaster risk reduction and disaster risk management. As such, most countries in SSA have developed/reviewed policies, strategies, and plans and put in place institutions with dedicated staffs and resources for natural hazard management. However, the lack of financial backing, limited skills, lack of coordination among sectors, weak political leadership, inadequate communication, and shallow natural hazard risk assessment, hinders effective natural hazard management in SSA. The focus here is on the governance of natural hazards in the sub-Saharan Africa region, and an outline of SSA’s natural hazard profile is presented. Climate change is increasing the frequency and magnitude of extreme weather events, thus influencing the occurrence of natural hazards in this region. Also emphasized are good practices in natural hazard governance, and SSA’s success stories are described. Finally, recommendations on governance arrangements for effective implementation of disaster risk reduction initiatives and measures are provided.

Article

Mainaak Mukhopadhyay and Tapan Kumar Mondal

Tea, the globally admired, non-alcoholic, caffeine-containing beverage, is manufactured from the tender leaves of the tea [Camellia sinensis (L.)] plant. It is basically a woody, perennial crop with a lifespan of more than 100 years. Cultivated tea plants are natural hybrids of the three major taxa or species, China, Assam (Indian), or Cambod (southern) hybrids based on the morphological characters (principally leaf size). Planting materials are either seedlings (10–18 months old) developed from either hybrid, polyclonal, or biclonal seeds, or clonal cuttings developed from single-leaf nodal cuttings of elite genotypes. Plants are forced to remain in the vegetative stage as bushes by following cultural practices like centering, pruning, and plucking, and they are harvested generally from the second year onward at regular intervals of 7–10 days in the tropics and subtropics, with up to 60 years as the economic lifespan. Originally, the Chinese were the first to use tea as a medicinal beverage, around 2000 years ago, and today, around half of the world’s population drink tea. It is primarily consumed as black tea (fermented tea), although green tea (non-fermented) and oolong tea (semifermented) are also consumed in many countries. Tea is also used as vegetables such as “leppet tea” in Burma and “meing tea” in Thailand. Green tea has extraordinary antioxidant properties, and black tea plays a positive role in treating cardiovascular ailments. Tea in general has considerable therapeutic value and can cure many diseases. Global tea production (black, green, and instant) has increased significantly during the past few years. China, as the world’s largest tea producer, accounts for more than 38% of the total global production of made tea [i.e. ready to drink tea] annually, while production in India, the second-largest producer. India recorded total production of 1233.14 million kg made tea during 2015–2016, which is the highest ever production so far. Since it is an intensive monoculture, tea cultivation has environmental impacts. Application of weedicides, pesticides, and inorganic fertilizers creates environmental hazards. Meanwhile, insecticides often eliminate the fauna of a vast tract of land. Soil degradation is an additional concern because the incessant use of fertilizers and herbicides compound soil erosion. Apart from those issues, chemical runoff into bodies of water can also create problems. Finally, during tea manufacturing, fossil fuel is used to dry the processed leaves, which also increases environmental pollution.

Article

Public participation in environmental management, and more specifically in hazard mitigation planning, has received much attention from scholars and practitioners. A shift in perspective now sees the public as a fundamental player in decision-making rather than simply as the final recipient of a policy decision. Including the public in hazard mitigation planning brings widespread benefits. First, communities gain awareness of the risks they live with, and thus, this is an opportunity to empower communities and improve their resilience. Second, supported by a collaborative participation process, emergency managers and planners can achieve the ultimate goal of strong mitigation plans. Although public participation is highly desired as an instrument to improve hazard mitigation planning, appropriate participation techniques are context dependent and some trade-offs exist in the process design (such as between representativeness and consensus building). Designing participation processes requires careful planning and an all-around consideration of the representativeness of stakeholders, timing, objectives, knowledge, and ultimately desired goals to achieve. Assessing participation also requires more consistent methods to facilitate policy learning from diverse experiences. New decision-support tools may be necessary to gain widespread participation from laypersons lacking technical knowledge of hazards and risks.

Article

Thomas Husted and David Nickerson

Natural disasters pose a significant and rapidly growing burden to society, causing over a million deaths and worldwide economic losses in the trillions of dollars in the last twenty years. Concerned over the extent to which their populations are exposed to disaster risk, policymakers in disaster-prone countries strive to increase the penetration of disaster insurance from its relatively low current level and wish to arrest the increasing share of public liability for private losses arising from rising public expenditures on disaster recovery. Although evidence regarding disaster risk and insurance suggests that individuals respond to their economic incentives when deciding on the degree to which to expose their property and other to risk from a recurrent disaster, potential inefficiencies in private insurance markets can distort these individual incentives and result in underinsurance and excessive exposure. Current research into whether such apparent market inefficiencies are primarily attributed to the behavior of private market participants or to the adverse incentives arising from current programs of disaster aid, regulation and other public policies is of fundamental importance to attaining these policy objectives. This article critically assesses the current state of mainstream economic and political research into disasters, public policy, and household behavior toward disaster risk. Findings of the most important and influential empirical and theoretical studies over the last 30 years are described, as well as limits on the robustness and interpretation of these findings arising from the characteristics of economic data on disasters and potential bias in measuring the determinants of disaster insurance coverage. Also discussed are both theoretical and empirical evidence that moral hazard on the part of households, insurance firms, and elected officials results in misallocations of private coverage; and it is demonstrated that, exactly contrary to the objectives of public policy, current programs of disaster aid in the presence of moral hazard create incentives for households to minimize, rather than maximize, market coverage of their exposure to disaster risk. The conclusion presents and proves a proposition, original to this article, that any compensatory public aid program is necessarily a source of economic inefficiency and, conditional on net losses, decreases economic welfare.

Article

Hazard management scholars have begun to develop an important line of inquiry based upon the idea of governance. This growing body of work focuses attention on how the hazard functions that were formerly carried out by public entities are now frequently dispersed among diverse sets of actors that include not only governmental institutions but also private-sector and civil society entities. While informative, this body of work is unduly narrow. In particular, it takes an actor-centric approach to the governance of hazards. A more comprehensive view would account for the relationship between the governance system and the underlying good being produced. Generally speaking, governance systems emerge to manage—or produce—particular goods. Accordingly, these systems will vary depending upon the nature of the underlying good. Thus, while it is important to describe the actors that shape the governance system—as the extant literature does— the failure to recognize or appreciate the relationship between hazards governance and its underlying good is non-trivial. At minimum, without this information scholars and practitioners cannot reasonably assess the efficacy of the system. To better understand hazards governance, there needs to be a clear picture of what the governance system is producing, as well as the defining characteristics thereof. The good being produced by hazards governance systems is resilience, which is both non-rivalrous and non-excludable. Simply stated, resilience can be conceptualized as a public good. Moreover, governance systems in general are comprised of multiple subsystems. In the case of hazards management, the subsystems are mitigation, preparedness, response, and recovery. Thus, the production technologies—aggregate effort, single best effort, and weakest link—will likely vary across the hazards governance system. Showing how these technologies potentially vary across hazard governance systems opens new and important lines of inquiry.

Article

Jason Thistlethwaite and Daniel Henstra

Natural hazards are a complex governance problem. Managing the risks associated with natural hazards requires action at all scales—from household to national—but coordinating these nested responses to achieve a vertically cohesive course of action is challenging. Moreover, though governments have the legal authority and legitimacy to mandate or facilitate natural hazard risk reduction, non-governmental actors such as business firms, industry associations, research organizations and non-profit organizations hold much of the pertinent knowledge and resources. This interdependence demands horizontal collaboration, but coordinating risk reduction across organizational divides is fraught with challenges and requires skillful leadership. Flood risk management (FRM)—an integrated strategy to reduce the likelihood and impacts of flooding—demonstrates the governance challenge presented by natural hazards. By engaging stakeholders, coordinating public and private efforts, and employing a diversity of policy instruments, FRM can strengthen societal resilience, achieve greater efficiency, and enhance the legitimacy of decisions and actions to reduce flood risk. Implementing FRM, however, requires supportive flood risk governance arrangements that facilitate vertical and horizontal policy coordination by establishing strategic goals, negotiating roles and responsibilities, aligning policy instruments, and allocating resources.